Office Applications and Entertainment, Latin Squares |
||
![]() |
Attachment 4.7.1 | About the Author |
Construction of order 17 Self Orthogonal Composed Latin Diagonal Squares
Construct an order 16 Self Orthogonal Composed Latin Diagonal Square.
|
Step 1
5 4 7 6 6 7 4 5 4 5 6 7 7 6 5 4
1 0 3 2 2 3 0 1 0 1 2 3 3 2 1 0
14 13 16 15 15 16 13 14 13 14 15 16 16 15 14 13
10 9 12 11 11 12 9 10 9 10 11 12 12 11 10 9
10 9 12 11 11 12 9 10 9 10 11 12 12 11 10 9
14 13 16 15 15 16 13 14 13 14 15 16 16 15 14 13
1 0 3 2 2 3 0 1 0 1 2 3 3 2 1 0
5 4 7 6 6 7 4 5 4 5 6 7 7 6 5 4
1 0 3 2 2 3 0 1 0 1 2 3 3 2 1 0
5 4 7 6 6 7 4 5 4 5 6 7 7 6 5 4
10 9 12 11 11 12 9 10 9 10 11 12 12 11 10 9
14 13 16 15 15 16 13 14 13 14 15 16 16 15 14 13
14 13 16 15 15 16 13 14 13 14 15 16 16 15 14 13
10 9 12 11 11 12 9 10 9 10 11 12 12 11 10 9
5 4 7 6 6 7 4 5 4 5 6 7 7 6 5 4
1 0 3 2 2 3 0 1 0 1 2 3 3 2 1 0 Sqrs4
5 1 14 10 10 14 1 5 1 5 10 14 14 10 5 1
The order 4 Self orthogonal Latin Diagonal Square right is based on the first elemnets of the Sub Squares,
and has been used as a guideline for the construction.
Step 2 The Intermediate Square is magic but has to be transformed to a Self Orthogonal Latin Diagonal Square, which can be achieved by means of a set of four order 5 Auxiliary Latin Diagonal Squares: |
A51
5 4 8 7 6 8 7 6 5 4 6 5 4 8 7 4 8 7 6 5 7 6 5 4 8 A52
14 13 8 16 15 8 16 15 14 13 15 14 13 8 16 13 8 16 15 14 16 15 14 13 8 A53
8 11 12 9 10 12 9 10 8 11 10 8 11 12 9 11 12 9 10 8 9 10 8 11 12 A54
8 2 3 0 1 3 0 1 8 2 1 8 2 3 0 2 3 0 1 8 0 1 8 2 3
The four Auxiliary Squares are based on the four sub series defined above and the number 8 (= center).
Step 3
The order 17 Self Orthogonal Composed Latin Diagonal Square shown above is ready to be used for
the construction of an order 17 Composed Simple Magic Square.
|
![]() |
About the Author |