Office Applications and Entertainment, Latin Squares |
||
![]() |
Attachment 7.10.1 | About the Author |
Construction of order 39 Self Orthogonal Composed Latin Diagonal Squares
Construct an order 35 Self Orthogonal Composed Latin Diagonal Square.
The order 5 Self orthogonal Latin Diagonal Square left above (Sqrs7) is based on the first elements of the Sub Squares,
and has been used as a guideline for the construction Step 1.
|
Step 1
38 37 35 33 32 36 34 35 33 32 36 34 38 37 32 36 34 38 37 35 33 34 38 37 35 33 32 36 37 35 33 32 36 34 38 33 32 36 34 38 37 35 36 34 38 37 35 33 32
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
31 30 28 26 25 29 27 28 26 25 29 27 31 30 25 29 27 31 30 28 26 27 31 30 28 26 25 29 30 28 26 25 29 27 31 26 25 29 27 31 30 28 29 27 31 30 28 26 25
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
31 30 28 26 25 29 27 28 26 25 29 27 31 30 25 29 27 31 30 28 26 27 31 30 28 26 25 29 30 28 26 25 29 27 31 26 25 29 27 31 30 28 29 27 31 30 28 26 25
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
38 37 35 33 32 36 34 35 33 32 36 34 38 37 32 36 34 38 37 35 33 34 38 37 35 33 32 36 37 35 33 32 36 34 38 33 32 36 34 38 37 35 36 34 38 37 35 33 32
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
38 37 35 33 32 36 34 35 33 32 36 34 38 37 32 36 34 38 37 35 33 34 38 37 35 33 32 36 37 35 33 32 36 34 38 33 32 36 34 38 37 35 36 34 38 37 35 33 32
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
31 30 28 26 25 29 27 28 26 25 29 27 31 30 25 29 27 31 30 28 26 27 31 30 28 26 25 29 30 28 26 25 29 27 31 26 25 29 27 31 30 28 29 27 31 30 28 26 25
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
31 30 28 26 25 29 27 28 26 25 29 27 31 30 25 29 27 31 30 28 26 27 31 30 28 26 25 29 30 28 26 25 29 27 31 26 25 29 27 31 30 28 29 27 31 30 28 26 25
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
38 37 35 33 32 36 34 35 33 32 36 34 38 37 32 36 34 38 37 35 33 34 38 37 35 33 32 36 37 35 33 32 36 34 38 33 32 36 34 38 37 35 36 34 38 37 35 33 32
31 30 28 26 25 29 27 28 26 25 29 27 31 30 25 29 27 31 30 28 26 27 31 30 28 26 25 29 30 28 26 25 29 27 31 26 25 29 27 31 30 28 29 27 31 30 28 26 25
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
38 37 35 33 32 36 34 35 33 32 36 34 38 37 32 36 34 38 37 35 33 34 38 37 35 33 32 36 37 35 33 32 36 34 38 33 32 36 34 38 37 35 36 34 38 37 35 33 32
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
Construct an intermediate order 39 square by adding the Auxilliary Square Aux4 and the related rows and columns, to the order 35 Self Orthogonal Composed Latin Diagonal Square as shown below: Step 2 The Intermediate Square has to be completed and transformed to a Self Orthogonal Latin Diagonal Square, which can be achieved by means of a set of twenty order 8 Auxiliary Latin Diagonal Squares: |
21
32 34 37 38 21 36 35 33 35 33 21 36 37 38 32 34 33 37 34 21 38 35 36 32 36 32 38 35 34 21 33 37 34 38 32 37 36 33 21 35 21 35 36 33 32 37 34 38 37 21 33 34 35 32 38 36 38 36 35 32 33 34 37 21 22
14 16 19 20 22 18 17 15 17 15 22 18 19 20 14 16 15 19 16 22 20 17 18 14 18 14 20 17 16 22 15 19 16 20 14 19 18 15 22 17 22 17 18 15 14 19 16 20 19 22 15 16 17 14 20 18 20 18 17 14 15 16 19 22 23
0 2 5 6 23 4 3 1 3 1 23 4 5 6 0 2 1 5 2 23 6 3 4 0 4 0 6 3 2 23 1 5 2 6 0 5 4 1 23 3 23 3 4 1 0 5 2 6 5 23 1 2 3 0 6 4 6 4 3 0 1 2 5 23 24
30 26 29 24 31 28 27 25 27 25 31 28 29 24 30 26 25 29 26 31 24 27 28 30 28 30 24 27 26 31 25 29 26 24 30 29 28 25 31 27 31 27 28 25 30 29 26 24 29 31 25 26 27 30 24 28 24 28 27 30 25 26 29 31 21
0 2 5 6 22 4 3 1 3 1 22 4 5 6 0 2 1 5 2 22 6 3 4 0 4 0 6 3 2 22 1 5 2 6 0 5 4 1 22 3 22 3 4 1 0 5 2 6 5 22 1 2 3 0 6 4 6 4 3 0 1 2 5 22 23
25 27 30 31 23 29 28 26 28 26 23 29 30 31 25 27 26 30 27 23 31 28 29 25 29 25 31 28 27 23 26 30 27 31 25 30 29 26 23 28 23 28 29 26 25 30 27 31 30 23 26 27 28 25 31 29 31 29 28 25 26 27 30 23 24
7 9 12 13 24 11 10 8 10 8 24 11 12 13 7 9 8 12 9 24 13 10 11 7 11 7 13 10 9 24 8 12 9 13 7 12 11 8 24 10 24 10 11 8 7 12 9 13 12 24 8 9 10 7 13 11 13 11 10 7 8 9 12 24 21
19 15 18 21 20 17 16 14 16 14 20 17 18 21 19 15 14 18 15 20 21 16 17 19 17 19 21 16 15 20 14 18 15 21 19 18 17 14 20 16 20 16 17 14 19 18 15 21 18 20 14 15 16 19 21 17 21 17 16 19 14 15 18 20 21
7 9 12 13 23 11 10 8 10 8 23 11 12 13 7 9 8 12 9 23 13 10 11 7 11 7 13 10 9 23 8 12 9 13 7 12 11 8 23 10 23 10 11 8 7 12 9 13 12 23 8 9 10 7 13 11 13 11 10 7 8 9 12 23 24
32 34 37 38 24 36 35 33 35 33 24 36 37 38 32 34 33 37 34 24 38 35 36 32 36 32 38 35 34 24 33 37 34 38 32 37 36 33 24 35 24 35 36 33 32 37 34 38 37 24 33 34 35 32 38 36 38 36 35 32 33 34 37 24 21
21 1 4 5 6 3 2 0 2 0 6 3 4 5 21 1 0 4 1 6 5 2 3 21 3 21 5 2 1 6 0 4 1 5 21 4 3 0 6 2 6 2 3 0 21 4 1 5 4 6 0 1 2 21 5 3 5 3 2 21 0 1 4 6 22
22 26 29 30 31 28 27 25 27 25 31 28 29 30 22 26 25 29 26 31 30 27 28 22 28 22 30 27 26 31 25 29 26 30 22 29 28 25 31 27 31 27 28 25 22 29 26 30 29 31 25 26 27 22 30 28 30 28 27 22 25 26 29 31 24
14 16 19 20 15 18 17 24 17 24 15 18 19 20 14 16 24 19 16 15 20 17 18 14 18 14 20 17 16 15 24 19 16 20 14 19 18 24 15 17 15 17 18 24 14 19 16 20 19 15 24 16 17 14 20 18 20 18 17 14 24 16 19 15 21
21 26 29 30 31 28 27 25 27 25 31 28 29 30 21 26 25 29 26 31 30 27 28 21 28 21 30 27 26 31 25 29 26 30 21 29 28 25 31 27 31 27 28 25 21 29 26 30 29 31 25 26 27 21 30 28 30 28 27 21 25 26 29 31 22
22 8 11 12 13 10 9 7 9 7 13 10 11 12 22 8 7 11 8 13 12 9 10 22 10 22 12 9 8 13 7 11 8 12 22 11 10 7 13 9 13 9 10 7 22 11 8 12 11 13 7 8 9 22 12 10 12 10 9 22 7 8 11 13 23
23 33 36 37 38 35 34 32 34 32 38 35 36 37 23 33 32 36 33 38 37 34 35 23 35 23 37 34 33 38 32 36 33 37 23 36 35 32 38 34 38 34 35 32 23 36 33 37 36 38 32 33 34 23 37 35 37 35 34 23 32 33 36 38 21
7 9 12 13 8 11 10 21 10 21 8 11 12 13 7 9 21 12 9 8 13 10 11 7 11 7 13 10 9 8 21 12 9 13 7 12 11 21 8 10 8 10 11 21 7 12 9 13 12 8 21 9 10 7 13 11 13 11 10 7 21 9 12 8 22
22 33 36 37 38 35 34 32 34 32 38 35 36 37 22 33 32 36 33 38 37 34 35 22 35 22 37 34 33 38 32 36 33 37 22 36 35 32 38 34 38 34 35 32 22 36 33 37 36 38 32 33 34 22 37 35 37 35 34 22 32 33 36 38 23
23 15 18 19 20 17 16 14 16 14 20 17 18 19 23 15 14 18 15 20 19 16 17 23 17 23 19 16 15 20 14 18 15 19 23 18 17 14 20 16 20 16 17 14 23 18 15 19 18 20 14 15 16 23 19 17 19 17 16 23 14 15 18 20 24
24 1 4 5 6 3 2 0 2 0 6 3 4 5 24 1 0 4 1 6 5 2 3 24 3 24 5 2 1 6 0 4 1 5 24 4 3 0 6 2 6 2 3 0 24 4 1 5 4 6 0 1 2 24 5 3 5 3 2 24 0 1 4 6
The twenty Auxiliary Squares are based on the five sub series defined above and the series {21, 22, 23, 24}.
|
Step 3
32 34 37 38 21 36 35 14 16 19 20 22 18 17 33 15 0 2 5 6 23 4 3 1 30 26 29 24 31 28 27 25 13 12 10 8 7 11 9 35 33 21 36 37 38 32 17 15 22 18 19 20 14 34 16 3 1 23 4 5 6 0 2 27 25 31 28 29 24 30 26 10 8 7 11 9 13 12 33 37 34 21 38 35 36 15 19 16 22 20 17 18 32 14 1 5 2 23 6 3 4 0 25 29 26 31 24 27 28 30 7 11 9 13 12 10 8 36 32 38 35 34 21 33 18 14 20 17 16 22 15 37 19 4 0 6 3 2 23 1 5 28 30 24 27 26 31 25 29 9 13 12 10 8 7 11 34 38 32 37 36 33 21 16 20 14 19 18 15 22 35 17 2 6 0 5 4 1 23 3 26 24 30 29 28 25 31 27 12 10 8 7 11 9 13 21 35 36 33 32 37 34 22 17 18 15 14 19 16 38 20 23 3 4 1 0 5 2 6 31 27 28 25 30 29 26 24 8 7 11 9 13 12 10 37 21 33 34 35 32 38 19 22 15 16 17 14 20 36 18 5 23 1 2 3 0 6 4 29 31 25 26 27 30 24 28 11 9 13 12 10 8 7 0 2 5 6 22 4 3 25 27 30 31 23 29 28 19 1 7 9 12 13 24 11 10 26 8 38 37 35 33 32 36 34 15 18 21 20 17 16 14 3 1 22 4 5 6 0 28 26 23 29 30 31 25 16 2 10 8 24 11 12 13 7 27 9 35 33 32 36 34 38 37 14 20 17 18 21 19 15 1 5 2 22 6 3 4 26 30 27 23 31 28 29 14 0 8 12 9 24 13 10 11 25 7 32 36 34 38 37 35 33 18 15 20 21 16 17 19 4 0 6 3 2 22 1 29 25 31 28 27 23 26 17 5 11 7 13 10 9 24 8 30 12 34 38 37 35 33 32 36 19 21 16 15 20 14 18 2 6 0 5 4 1 22 27 31 25 30 29 26 23 15 3 9 13 7 12 11 8 24 28 10 37 35 33 32 36 34 38 21 19 18 17 14 20 16 22 3 4 1 0 5 2 23 28 29 26 25 30 27 20 6 24 10 11 8 7 12 9 31 13 33 32 36 34 38 37 35 16 17 14 19 18 15 21 5 22 1 2 3 0 6 30 23 26 27 28 25 31 18 4 12 24 8 9 10 7 13 29 11 36 34 38 37 35 33 32 20 14 15 16 19 21 17 38 36 35 32 33 34 37 7 9 12 13 8 11 10 21 23 26 29 30 31 28 27 25 24 22 1 4 5 6 3 2 0 17 16 19 14 15 18 20 6 4 3 0 1 2 5 20 18 17 14 15 16 19 24 22 33 36 37 38 35 34 32 21 23 8 11 12 13 10 9 7 26 29 30 31 28 27 25 7 9 12 13 23 11 10 32 34 37 38 24 36 35 2 27 20 19 17 15 14 18 16 8 33 0 6 3 4 5 21 1 25 31 28 29 30 22 26 10 8 23 11 12 13 7 35 33 24 36 37 38 32 0 25 17 15 14 18 16 20 19 9 34 4 1 6 5 2 3 21 29 26 31 30 27 28 22 8 12 9 23 13 10 11 33 37 34 24 38 35 36 3 28 14 18 16 20 19 17 15 7 32 21 5 2 1 6 0 4 22 30 27 26 31 25 29 11 7 13 10 9 23 8 36 32 38 35 34 24 33 1 26 16 20 19 17 15 14 18 12 37 5 21 4 3 0 6 2 30 22 29 28 25 31 27 9 13 7 12 11 8 23 34 38 32 37 36 33 24 6 31 19 17 15 14 18 16 20 10 35 2 3 0 21 4 1 5 27 28 25 22 29 26 30 23 10 11 8 7 12 9 24 35 36 33 32 37 34 4 29 15 14 18 16 20 19 17 13 38 6 0 1 2 21 5 3 31 25 26 27 22 30 28 12 23 8 9 10 7 13 37 24 33 34 35 32 38 5 30 18 16 20 19 17 15 14 11 36 3 2 21 0 1 4 6 28 27 22 25 26 29 31 13 11 10 7 8 9 12 31 29 28 25 26 27 30 22 24 6 4 3 0 1 2 5 23 21 15 18 19 20 17 16 14 33 36 37 38 35 34 32 14 16 19 20 15 18 17 38 36 35 32 33 34 37 23 21 13 11 10 7 8 9 12 22 24 28 27 30 25 26 29 31 1 4 5 6 3 2 0 17 24 15 18 19 20 14 6 5 3 1 0 4 2 27 9 25 31 28 29 30 21 26 34 16 7 13 10 11 12 22 8 32 38 35 36 37 23 33 24 19 16 15 20 17 18 3 1 0 4 2 6 5 25 7 29 26 31 30 27 28 21 32 14 11 8 13 12 9 10 22 36 33 38 37 34 35 23 18 14 20 17 16 15 24 0 4 2 6 5 3 1 28 10 21 30 27 26 31 25 29 35 19 22 12 9 8 13 7 11 23 37 34 33 38 32 36 16 20 14 19 18 24 15 2 6 5 3 1 0 4 26 8 30 21 29 28 25 31 27 33 17 12 22 11 10 7 13 9 37 23 36 35 32 38 34 15 17 18 24 14 19 16 5 3 1 0 4 2 6 31 13 27 28 25 21 29 26 30 38 20 9 10 7 22 11 8 12 34 35 32 23 36 33 37 19 15 24 16 17 14 20 1 0 4 2 6 5 3 29 11 31 25 26 27 21 30 28 36 18 13 7 8 9 22 12 10 38 32 33 34 23 37 35 20 18 17 14 24 16 19 4 2 6 5 3 1 0 30 12 28 27 21 25 26 29 31 37 15 10 9 22 7 8 11 13 35 34 23 32 33 36 38 31 30 28 26 25 29 27 10 21 8 11 12 13 7 9 34 32 38 35 36 37 22 33 16 2 14 20 17 18 19 23 15 0 6 3 4 5 24 1 28 26 25 29 27 31 30 21 12 9 8 13 10 11 7 32 36 33 38 37 34 35 22 14 0 18 15 20 19 16 17 23 4 1 6 5 2 3 24 25 29 27 31 30 28 26 11 7 13 10 9 8 21 12 35 22 37 34 33 38 32 36 17 3 23 19 16 15 20 14 18 24 5 2 1 6 0 4 27 31 30 28 26 25 29 9 13 7 12 11 21 8 10 33 37 22 36 35 32 38 34 15 1 19 23 18 17 14 20 16 5 24 4 3 0 6 2 30 28 26 25 29 27 31 8 10 11 21 7 12 9 13 38 34 35 32 22 36 33 37 20 6 16 17 14 23 18 15 19 2 3 0 24 4 1 5 26 25 29 27 31 30 28 12 8 21 9 10 7 13 11 36 38 32 33 34 22 37 35 18 4 20 14 15 16 23 19 17 6 0 1 2 24 5 3 29 27 31 30 28 26 25 13 11 10 7 21 9 12 8 37 35 34 22 32 33 36 38 19 5 17 16 23 14 15 18 20 3 2 24 0 1 4 6
The order 39 Self Orthogonal Composed Latin Diagonal Square shown above is ready to be used for
the construction of an order 39 Composed Simple Magic Square.
|
![]() |
About the Author |