Office Applications and Entertainment, Latin Squares

Vorige Pagina Attachment 7.7.1 About the Author

Construction of order 29 Self Orthogonal Composed Latin Diagonal Squares

Construct an order 28 Self Orthogonal Composed Latin Diagonal Square.

The required order 7 Self orthogonal Latin Diagonal Sub Squares can be constructed based on the sub series:

    {0, 1 ... 6}, {7, 8 ... 13}, {14}, {15, 16 ... 21} and {22, 23 ... 28}

with respectively the magic constants s7 = 21, 70, 126 and 175

Sqrs7
24 17 2 9
2 9 24 17
9 2 17 24
17 24 9 2

The order 4 Self orthogonal Latin Diagonal Square shown above is based on the first elemnets of the Sub Squares, and has been used as a guideline for the construction of the square shown below.

Step 1
24 26 25 22 27 28 23
28 23 27 26 24 22 25
23 24 22 27 26 25 28
26 27 28 25 22 23 24
22 25 24 23 28 26 27
25 28 26 24 23 27 22
27 22 23 28 25 24 26
17 19 18 15 20 21 16
21 16 20 19 17 15 18
16 17 15 20 19 18 21
19 20 21 18 15 16 17
15 18 17 16 21 19 20
18 21 19 17 16 20 15
20 15 16 21 18 17 19
2 4 3 0 5 6 1
6 1 5 4 2 0 3
1 2 0 5 4 3 6
4 5 6 3 0 1 2
0 3 2 1 6 4 5
3 6 4 2 1 5 0
5 0 1 6 3 2 4
9 11 10 7 12 13 8
13 8 12 11 9 7 10
8 9 7 12 11 10 13
11 12 13 10 7 8 9
7 10 9 8 13 11 12
10 13 11 9 8 12 7
12 7 8 13 10 9 11
2 4 3 0 5 6 1
6 1 5 4 2 0 3
1 2 0 5 4 3 6
4 5 6 3 0 1 2
0 3 2 1 6 4 5
3 6 4 2 1 5 0
5 0 1 6 3 2 4
9 11 10 7 12 13 8
13 8 12 11 9 7 10
8 9 7 12 11 10 13
11 12 13 10 7 8 9
7 10 9 8 13 11 12
10 13 11 9 8 12 7
12 7 8 13 10 9 11
24 26 25 22 27 28 23
28 23 27 26 24 22 25
23 24 22 27 26 25 28
26 27 28 25 22 23 24
22 25 24 23 28 26 27
25 28 26 24 23 27 22
27 22 23 28 25 24 26
17 19 18 15 20 21 16
21 16 20 19 17 15 18
16 17 15 20 19 18 21
19 20 21 18 15 16 17
15 18 17 16 21 19 20
18 21 19 17 16 20 15
20 15 16 21 18 17 19
9 11 10 7 12 13 8
13 8 12 11 9 7 10
8 9 7 12 11 10 13
11 12 13 10 7 8 9
7 10 9 8 13 11 12
10 13 11 9 8 12 7
12 7 8 13 10 9 11
2 4 3 0 5 6 1
6 1 5 4 2 0 3
1 2 0 5 4 3 6
4 5 6 3 0 1 2
0 3 2 1 6 4 5
3 6 4 2 1 5 0
5 0 1 6 3 2 4
17 19 18 15 20 21 16
21 16 20 19 17 15 18
16 17 15 20 19 18 21
19 20 21 18 15 16 17
15 18 17 16 21 19 20
18 21 19 17 16 20 15
20 15 16 21 18 17 19
24 26 25 22 27 28 23
28 23 27 26 24 22 25
23 24 22 27 26 25 28
26 27 28 25 22 23 24
22 25 24 23 28 26 27
25 28 26 24 23 27 22
27 22 23 28 25 24 26
17 19 18 15 20 21 16
21 16 20 19 17 15 18
16 17 15 20 19 18 21
19 20 21 18 15 16 17
15 18 17 16 21 19 20
18 21 19 17 16 20 15
20 15 16 21 18 17 19
24 26 25 22 27 28 23
28 23 27 26 24 22 25
23 24 22 27 26 25 28
26 27 28 25 22 23 24
22 25 24 23 28 26 27
25 28 26 24 23 27 22
27 22 23 28 25 24 26
9 11 10 7 12 13 8
13 8 12 11 9 7 10
8 9 7 12 11 10 13
11 12 13 10 7 8 9
7 10 9 8 13 11 12
10 13 11 9 8 12 7
12 7 8 13 10 9 11
2 4 3 0 5 6 1
6 1 5 4 2 0 3
1 2 0 5 4 3 6
4 5 6 3 0 1 2
0 3 2 1 6 4 5
3 6 4 2 1 5 0
5 0 1 6 3 2 4

Construct an intermediate order 29 square by adding a Center Cross, to the order 28 Self Orthogonal Composed Latin Diagonal Square as shown below:

Step 2
24 26 25 22 27 28 23 17 19 18 15 20 21 16 0 2 4 3 0 5 6 1 9 11 10 7 12 13 8
28 23 27 26 24 22 25 21 16 20 19 17 15 18 0 6 1 5 4 2 0 3 13 8 12 11 9 7 10
23 24 22 27 26 25 28 16 17 15 20 19 18 21 0 1 2 0 5 4 3 6 8 9 7 12 11 10 13
26 27 28 25 22 23 24 19 20 21 18 15 16 17 0 4 5 6 3 0 1 2 11 12 13 10 7 8 9
22 25 24 23 28 26 27 15 18 17 16 21 19 20 0 0 3 2 1 6 4 5 7 10 9 8 13 11 12
25 28 26 24 23 27 22 18 21 19 17 16 20 15 0 3 6 4 2 1 5 0 10 13 11 9 8 12 7
27 22 23 28 25 24 26 20 15 16 21 18 17 19 0 5 0 1 6 3 2 4 12 7 8 13 10 9 11
2 4 3 0 5 6 1 9 11 10 7 12 13 8 0 24 26 25 22 27 28 23 17 19 18 15 20 21 16
6 1 5 4 2 0 3 13 8 12 11 9 7 10 0 28 23 27 26 24 22 25 21 16 20 19 17 15 18
1 2 0 5 4 3 6 8 9 7 12 11 10 13 0 23 24 22 27 26 25 28 16 17 15 20 19 18 21
4 5 6 3 0 1 2 11 12 13 10 7 8 9 0 26 27 28 25 22 23 24 19 20 21 18 15 16 17
0 3 2 1 6 4 5 7 10 9 8 13 11 12 0 22 25 24 23 28 26 27 15 18 17 16 21 19 20
3 6 4 2 1 5 0 10 13 11 9 8 12 7 0 25 28 26 24 23 27 22 18 21 19 17 16 20 15
5 0 1 6 3 2 4 12 7 8 13 10 9 11 0 27 22 23 28 25 24 26 20 15 16 21 18 17 19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 11 10 7 12 13 8 2 4 3 0 5 6 1 0 17 19 18 15 20 21 16 24 26 25 22 27 28 23
13 8 12 11 9 7 10 6 1 5 4 2 0 3 0 21 16 20 19 17 15 18 28 23 27 26 24 22 25
8 9 7 12 11 10 13 1 2 0 5 4 3 6 0 16 17 15 20 19 18 21 23 24 22 27 26 25 28
11 12 13 10 7 8 9 4 5 6 3 0 1 2 0 19 20 21 18 15 16 17 26 27 28 25 22 23 24
7 10 9 8 13 11 12 0 3 2 1 6 4 5 0 15 18 17 16 21 19 20 22 25 24 23 28 26 27
10 13 11 9 8 12 7 3 6 4 2 1 5 0 0 18 21 19 17 16 20 15 25 28 26 24 23 27 22
12 7 8 13 10 9 11 5 0 1 6 3 2 4 0 20 15 16 21 18 17 19 27 22 23 28 25 24 26
17 19 18 15 20 21 16 24 26 25 22 27 28 23 0 9 11 10 7 12 13 8 2 4 3 0 5 6 1
21 16 20 19 17 15 18 28 23 27 26 24 22 25 0 13 8 12 11 9 7 10 6 1 5 4 2 0 3
16 17 15 20 19 18 21 23 24 22 27 26 25 28 0 8 9 7 12 11 10 13 1 2 0 5 4 3 6
19 20 21 18 15 16 17 26 27 28 25 22 23 24 0 11 12 13 10 7 8 9 4 5 6 3 0 1 2
15 18 17 16 21 19 20 22 25 24 23 28 26 27 0 7 10 9 8 13 11 12 0 3 2 1 6 4 5
18 21 19 17 16 20 15 25 28 26 24 23 27 22 0 10 13 11 9 8 12 7 3 6 4 2 1 5 0
20 15 16 21 18 17 19 27 22 23 28 25 24 26 0 12 7 8 13 10 9 11 5 0 1 6 3 2 4

The Intermediate Square has to be transformed to a Self Orthogonal Latin Diagonal Square, which can be achieved by means of a set of four order 8 Auxiliary Latin Diagonal Squares:

A81
22 24 27 28 14 26 25 23
25 23 14 26 27 28 22 24
23 27 24 14 28 25 26 22
26 22 28 25 24 14 23 27
24 28 22 27 26 23 14 25
14 25 26 23 22 27 24 28
27 14 23 24 25 22 28 26
28 26 25 22 23 24 27 14
A82
7 9 12 13 14 11 10 8
10 8 14 11 12 13 7 9
8 12 9 14 13 10 11 7
11 7 13 10 9 14 8 12
9 13 7 12 11 8 14 10
14 10 11 8 7 12 9 13
12 14 8 9 10 7 13 11
13 11 10 7 8 9 12 14
A83
14 16 19 20 21 18 17 15
17 15 21 18 19 20 14 16
15 19 16 21 20 17 18 14
18 14 20 17 16 21 15 19
16 20 14 19 18 15 21 17
21 17 18 15 14 19 16 20
19 21 15 16 17 14 20 18
20 18 17 14 15 16 19 21
A84
14 1 4 5 6 3 2 0
2 0 6 3 4 5 14 1
0 4 1 6 5 2 3 14
3 14 5 2 1 6 0 4
1 5 14 4 3 0 6 2
6 2 3 0 14 4 1 5
4 6 0 1 2 14 5 3
5 3 2 14 0 1 4 6

The four Auxiliary Squares are based on the four sub series defined above and the number 14 (= center).

Replace the Diagonal Sub Squares (of the Intermediate Square) together with the corresponding sections of the Center Cross by the contents of these Auxiliary Squares as shown below:

Step 3
22 24 27 28 14 26 25 17 19 18 15 20 21 16 23 2 4 3 0 5 6 1 9 11 10 7 12 13 8
25 23 14 26 27 28 22 21 16 20 19 17 15 18 24 6 1 5 4 2 0 3 13 8 12 11 9 7 10
23 27 24 14 28 25 26 16 17 15 20 19 18 21 22 1 2 0 5 4 3 6 8 9 7 12 11 10 13
26 22 28 25 24 14 23 19 20 21 18 15 16 17 27 4 5 6 3 0 1 2 11 12 13 10 7 8 9
24 28 22 27 26 23 14 15 18 17 16 21 19 20 25 0 3 2 1 6 4 5 7 10 9 8 13 11 12
14 25 26 23 22 27 24 18 21 19 17 16 20 15 28 3 6 4 2 1 5 0 10 13 11 9 8 12 7
27 14 23 24 25 22 28 20 15 16 21 18 17 19 26 5 0 1 6 3 2 4 12 7 8 13 10 9 11
2 4 3 0 5 6 1 7 9 12 13 14 11 10 8 24 26 25 22 27 28 23 17 19 18 15 20 21 16
6 1 5 4 2 0 3 10 8 14 11 12 13 7 9 28 23 27 26 24 22 25 21 16 20 19 17 15 18
1 2 0 5 4 3 6 8 12 9 14 13 10 11 7 23 24 22 27 26 25 28 16 17 15 20 19 18 21
4 5 6 3 0 1 2 11 7 13 10 9 14 8 12 26 27 28 25 22 23 24 19 20 21 18 15 16 17
0 3 2 1 6 4 5 9 13 7 12 11 8 14 10 22 25 24 23 28 26 27 15 18 17 16 21 19 20
3 6 4 2 1 5 0 14 10 11 8 7 12 9 13 25 28 26 24 23 27 22 18 21 19 17 16 20 15
5 0 1 6 3 2 4 12 14 8 9 10 7 13 11 27 22 23 28 25 24 26 20 15 16 21 18 17 19
28 26 25 22 23 24 27 13 11 10 7 8 9 12 14 16 19 20 21 18 17 15 1 4 5 6 3 2 0
9 11 10 7 12 13 8 2 4 3 0 5 6 1 17 15 21 18 19 20 14 16 24 26 25 22 27 28 23
13 8 12 11 9 7 10 6 1 5 4 2 0 3 15 19 16 21 20 17 18 14 28 23 27 26 24 22 25
8 9 7 12 11 10 13 1 2 0 5 4 3 6 18 14 20 17 16 21 15 19 23 24 22 27 26 25 28
11 12 13 10 7 8 9 4 5 6 3 0 1 2 16 20 14 19 18 15 21 17 26 27 28 25 22 23 24
7 10 9 8 13 11 12 0 3 2 1 6 4 5 21 17 18 15 14 19 16 20 22 25 24 23 28 26 27
10 13 11 9 8 12 7 3 6 4 2 1 5 0 19 21 15 16 17 14 20 18 25 28 26 24 23 27 22
12 7 8 13 10 9 11 5 0 1 6 3 2 4 20 18 17 14 15 16 19 21 27 22 23 28 25 24 26
17 19 18 15 20 21 16 24 26 25 22 27 28 23 2 9 11 10 7 12 13 8 0 6 3 4 5 14 1
21 16 20 19 17 15 18 28 23 27 26 24 22 25 0 13 8 12 11 9 7 10 4 1 6 5 2 3 14
16 17 15 20 19 18 21 23 24 22 27 26 25 28 3 8 9 7 12 11 10 13 14 5 2 1 6 0 4
19 20 21 18 15 16 17 26 27 28 25 22 23 24 1 11 12 13 10 7 8 9 5 14 4 3 0 6 2
15 18 17 16 21 19 20 22 25 24 23 28 26 27 6 7 10 9 8 13 11 12 2 3 0 14 4 1 5
18 21 19 17 16 20 15 25 28 26 24 23 27 22 4 10 13 11 9 8 12 7 6 0 1 2 14 5 3
20 15 16 21 18 17 19 27 22 23 28 25 24 26 5 12 7 8 13 10 9 11 3 2 14 0 1 4 6

The order 29 Self Orthogonal Composed Latin Diagonal Square shown above is ready to be used for the construction of an order 29 Composed Simple Magic Square.


Vorige Pagina About the Author