Office Applications and Entertainment, Latin Squares |
||
![]() |
Attachment 7.7.1 | About the Author |
Construction of order 29 Self Orthogonal Composed Latin Diagonal Squares
Construct an order 28 Self Orthogonal Composed Latin Diagonal Square.
Sqrs7 The order 4 Self orthogonal Latin Diagonal Square shown above is based on the first elemnets of the Sub Squares, and has been used as a guideline for the construction of the square shown below. |
Step 1
24 26 25 22 27 28 23 28 23 27 26 24 22 25 23 24 22 27 26 25 28 26 27 28 25 22 23 24 22 25 24 23 28 26 27 25 28 26 24 23 27 22 27 22 23 28 25 24 26
17 19 18 15 20 21 16 21 16 20 19 17 15 18 16 17 15 20 19 18 21 19 20 21 18 15 16 17 15 18 17 16 21 19 20 18 21 19 17 16 20 15 20 15 16 21 18 17 19
2 4 3 0 5 6 1 6 1 5 4 2 0 3 1 2 0 5 4 3 6 4 5 6 3 0 1 2 0 3 2 1 6 4 5 3 6 4 2 1 5 0 5 0 1 6 3 2 4
9 11 10 7 12 13 8 13 8 12 11 9 7 10 8 9 7 12 11 10 13 11 12 13 10 7 8 9 7 10 9 8 13 11 12 10 13 11 9 8 12 7 12 7 8 13 10 9 11
2 4 3 0 5 6 1 6 1 5 4 2 0 3 1 2 0 5 4 3 6 4 5 6 3 0 1 2 0 3 2 1 6 4 5 3 6 4 2 1 5 0 5 0 1 6 3 2 4
9 11 10 7 12 13 8 13 8 12 11 9 7 10 8 9 7 12 11 10 13 11 12 13 10 7 8 9 7 10 9 8 13 11 12 10 13 11 9 8 12 7 12 7 8 13 10 9 11
24 26 25 22 27 28 23 28 23 27 26 24 22 25 23 24 22 27 26 25 28 26 27 28 25 22 23 24 22 25 24 23 28 26 27 25 28 26 24 23 27 22 27 22 23 28 25 24 26
17 19 18 15 20 21 16 21 16 20 19 17 15 18 16 17 15 20 19 18 21 19 20 21 18 15 16 17 15 18 17 16 21 19 20 18 21 19 17 16 20 15 20 15 16 21 18 17 19
9 11 10 7 12 13 8 13 8 12 11 9 7 10 8 9 7 12 11 10 13 11 12 13 10 7 8 9 7 10 9 8 13 11 12 10 13 11 9 8 12 7 12 7 8 13 10 9 11
2 4 3 0 5 6 1 6 1 5 4 2 0 3 1 2 0 5 4 3 6 4 5 6 3 0 1 2 0 3 2 1 6 4 5 3 6 4 2 1 5 0 5 0 1 6 3 2 4
17 19 18 15 20 21 16 21 16 20 19 17 15 18 16 17 15 20 19 18 21 19 20 21 18 15 16 17 15 18 17 16 21 19 20 18 21 19 17 16 20 15 20 15 16 21 18 17 19
24 26 25 22 27 28 23 28 23 27 26 24 22 25 23 24 22 27 26 25 28 26 27 28 25 22 23 24 22 25 24 23 28 26 27 25 28 26 24 23 27 22 27 22 23 28 25 24 26
17 19 18 15 20 21 16 21 16 20 19 17 15 18 16 17 15 20 19 18 21 19 20 21 18 15 16 17 15 18 17 16 21 19 20 18 21 19 17 16 20 15 20 15 16 21 18 17 19
24 26 25 22 27 28 23 28 23 27 26 24 22 25 23 24 22 27 26 25 28 26 27 28 25 22 23 24 22 25 24 23 28 26 27 25 28 26 24 23 27 22 27 22 23 28 25 24 26
9 11 10 7 12 13 8 13 8 12 11 9 7 10 8 9 7 12 11 10 13 11 12 13 10 7 8 9 7 10 9 8 13 11 12 10 13 11 9 8 12 7 12 7 8 13 10 9 11
2 4 3 0 5 6 1 6 1 5 4 2 0 3 1 2 0 5 4 3 6 4 5 6 3 0 1 2 0 3 2 1 6 4 5 3 6 4 2 1 5 0 5 0 1 6 3 2 4
Construct an intermediate order 29 square by adding a Center Cross, to the order 28 Self Orthogonal Composed Latin Diagonal Square as shown below: Step 2 The Intermediate Square has to be transformed to a Self Orthogonal Latin Diagonal Square, which can be achieved by means of a set of four order 8 Auxiliary Latin Diagonal Squares: |
A81
22 24 27 28 14 26 25 23 25 23 14 26 27 28 22 24 23 27 24 14 28 25 26 22 26 22 28 25 24 14 23 27 24 28 22 27 26 23 14 25 14 25 26 23 22 27 24 28 27 14 23 24 25 22 28 26 28 26 25 22 23 24 27 14 A82
7 9 12 13 14 11 10 8 10 8 14 11 12 13 7 9 8 12 9 14 13 10 11 7 11 7 13 10 9 14 8 12 9 13 7 12 11 8 14 10 14 10 11 8 7 12 9 13 12 14 8 9 10 7 13 11 13 11 10 7 8 9 12 14 A83
14 16 19 20 21 18 17 15 17 15 21 18 19 20 14 16 15 19 16 21 20 17 18 14 18 14 20 17 16 21 15 19 16 20 14 19 18 15 21 17 21 17 18 15 14 19 16 20 19 21 15 16 17 14 20 18 20 18 17 14 15 16 19 21 A84
14 1 4 5 6 3 2 0 2 0 6 3 4 5 14 1 0 4 1 6 5 2 3 14 3 14 5 2 1 6 0 4 1 5 14 4 3 0 6 2 6 2 3 0 14 4 1 5 4 6 0 1 2 14 5 3 5 3 2 14 0 1 4 6
The four Auxiliary Squares are based on the four sub series defined above and the number 14 (= center).
Step 3
The order 29 Self Orthogonal Composed Latin Diagonal Square shown above is ready to be used for
the construction of an order 29 Composed Simple Magic Square.
|
![]() |
About the Author |