Office Applications and Entertainment, Latin Squares |
||
![]() |
Attachment 7.9.1 | About the Author |
Construction of order 36 Self Orthogonal Composed Latin Diagonal Squares
Construct an order 35 Self Orthogonal Composed Latin Diagonal Square.
Sqrs7 The order 5 Self orthogonal Latin Diagonal Square shown above is based on the first elemnets of the Sub Squares, and has been used as a guideline for the construction of the square shown below. |
Step 1
35 34 32 30 29 33 31 32 30 29 33 31 35 34 29 33 31 35 34 32 30 31 35 34 32 30 29 33 34 32 30 29 33 31 35 30 29 33 31 35 34 32 33 31 35 34 32 30 29
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
28 27 25 23 22 26 24 25 23 22 26 24 28 27 22 26 24 28 27 25 23 24 28 27 25 23 22 26 27 25 23 22 26 24 28 23 22 26 24 28 27 25 26 24 28 27 25 23 22
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
28 27 25 23 22 26 24 25 23 22 26 24 28 27 22 26 24 28 27 25 23 24 28 27 25 23 22 26 27 25 23 22 26 24 28 23 22 26 24 28 27 25 26 24 28 27 25 23 22
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
35 34 32 30 29 33 31 32 30 29 33 31 35 34 29 33 31 35 34 32 30 31 35 34 32 30 29 33 34 32 30 29 33 31 35 30 29 33 31 35 34 32 33 31 35 34 32 30 29
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
35 34 32 30 29 33 31 32 30 29 33 31 35 34 29 33 31 35 34 32 30 31 35 34 32 30 29 33 34 32 30 29 33 31 35 30 29 33 31 35 34 32 33 31 35 34 32 30 29
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
28 27 25 23 22 26 24 25 23 22 26 24 28 27 22 26 24 28 27 25 23 24 28 27 25 23 22 26 27 25 23 22 26 24 28 23 22 26 24 28 27 25 26 24 28 27 25 23 22
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
28 27 25 23 22 26 24 25 23 22 26 24 28 27 22 26 24 28 27 25 23 24 28 27 25 23 22 26 27 25 23 22 26 24 28 23 22 26 24 28 27 25 26 24 28 27 25 23 22
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
35 34 32 30 29 33 31 32 30 29 33 31 35 34 29 33 31 35 34 32 30 31 35 34 32 30 29 33 34 32 30 29 33 31 35 30 29 33 31 35 34 32 33 31 35 34 32 30 29
28 27 25 23 22 26 24 25 23 22 26 24 28 27 22 26 24 28 27 25 23 24 28 27 25 23 22 26 27 25 23 22 26 24 28 23 22 26 24 28 27 25 26 24 28 27 25 23 22
13 12 10 8 7 11 9 10 8 7 11 9 13 12 7 11 9 13 12 10 8 9 13 12 10 8 7 11 12 10 8 7 11 9 13 8 7 11 9 13 12 10 11 9 13 12 10 8 7
35 34 32 30 29 33 31 32 30 29 33 31 35 34 29 33 31 35 34 32 30 31 35 34 32 30 29 33 34 32 30 29 33 31 35 30 29 33 31 35 34 32 33 31 35 34 32 30 29
20 19 17 15 14 18 16 17 15 14 18 16 20 19 14 18 16 20 19 17 15 16 20 19 17 15 14 18 19 17 15 14 18 16 20 15 14 18 16 20 19 17 18 16 20 19 17 15 14
6 5 3 1 0 4 2 3 1 0 4 2 6 5 0 4 2 6 5 3 1 2 6 5 3 1 0 4 5 3 1 0 4 2 6 1 0 4 2 6 5 3 4 2 6 5 3 1 0
Construct an intermediate order 36 square by adding by adding a row and a column, to the order 35 Self Orthogonal Composed Latin Diagonal Square as shown below: |
Step 2
35 34 32 30 29 33 31 20 19 17 15 14 18 16 6 5 3 1 0 4 2 0 28 27 25 23 22 26 24 13 12 10 8 7 11 9 32 30 29 33 31 35 34 17 15 14 18 16 20 19 3 1 0 4 2 6 5 0 25 23 22 26 24 28 27 10 8 7 11 9 13 12 29 33 31 35 34 32 30 14 18 16 20 19 17 15 0 4 2 6 5 3 1 0 22 26 24 28 27 25 23 7 11 9 13 12 10 8 31 35 34 32 30 29 33 16 20 19 17 15 14 18 2 6 5 3 1 0 4 0 24 28 27 25 23 22 26 9 13 12 10 8 7 11 34 32 30 29 33 31 35 19 17 15 14 18 16 20 5 3 1 0 4 2 6 0 27 25 23 22 26 24 28 12 10 8 7 11 9 13 30 29 33 31 35 34 32 15 14 18 16 20 19 17 1 0 4 2 6 5 3 0 23 22 26 24 28 27 25 8 7 11 9 13 12 10 33 31 35 34 32 30 29 18 16 20 19 17 15 14 4 2 6 5 3 1 0 0 26 24 28 27 25 23 22 11 9 13 12 10 8 7 6 5 3 1 0 4 2 28 27 25 23 22 26 24 13 12 10 8 7 11 9 0 35 34 32 30 29 33 31 20 19 17 15 14 18 16 3 1 0 4 2 6 5 25 23 22 26 24 28 27 10 8 7 11 9 13 12 0 32 30 29 33 31 35 34 17 15 14 18 16 20 19 0 4 2 6 5 3 1 22 26 24 28 27 25 23 7 11 9 13 12 10 8 0 29 33 31 35 34 32 30 14 18 16 20 19 17 15 2 6 5 3 1 0 4 24 28 27 25 23 22 26 9 13 12 10 8 7 11 0 31 35 34 32 30 29 33 16 20 19 17 15 14 18 5 3 1 0 4 2 6 27 25 23 22 26 24 28 12 10 8 7 11 9 13 0 34 32 30 29 33 31 35 19 17 15 14 18 16 20 1 0 4 2 6 5 3 23 22 26 24 28 27 25 8 7 11 9 13 12 10 0 30 29 33 31 35 34 32 15 14 18 16 20 19 17 4 2 6 5 3 1 0 26 24 28 27 25 23 22 11 9 13 12 10 8 7 0 33 31 35 34 32 30 29 18 16 20 19 17 15 14 13 12 10 8 7 11 9 35 34 32 30 29 33 31 20 19 17 15 14 18 16 0 6 5 3 1 0 4 2 28 27 25 23 22 26 24 10 8 7 11 9 13 12 32 30 29 33 31 35 34 17 15 14 18 16 20 19 0 3 1 0 4 2 6 5 25 23 22 26 24 28 27 7 11 9 13 12 10 8 29 33 31 35 34 32 30 14 18 16 20 19 17 15 0 0 4 2 6 5 3 1 22 26 24 28 27 25 23 9 13 12 10 8 7 11 31 35 34 32 30 29 33 16 20 19 17 15 14 18 0 2 6 5 3 1 0 4 24 28 27 25 23 22 26 12 10 8 7 11 9 13 34 32 30 29 33 31 35 19 17 15 14 18 16 20 0 5 3 1 0 4 2 6 27 25 23 22 26 24 28 8 7 11 9 13 12 10 30 29 33 31 35 34 32 15 14 18 16 20 19 17 0 1 0 4 2 6 5 3 23 22 26 24 28 27 25 11 9 13 12 10 8 7 33 31 35 34 32 30 29 18 16 20 19 17 15 14 0 4 2 6 5 3 1 0 26 24 28 27 25 23 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 19 17 15 14 18 16 6 5 3 1 0 4 2 28 27 25 23 22 26 24 0 13 12 10 8 7 11 9 35 34 32 30 29 33 31 17 15 14 18 16 20 19 3 1 0 4 2 6 5 25 23 22 26 24 28 27 0 10 8 7 11 9 13 12 32 30 29 33 31 35 34 14 18 16 20 19 17 15 0 4 2 6 5 3 1 22 26 24 28 27 25 23 0 7 11 9 13 12 10 8 29 33 31 35 34 32 30 16 20 19 17 15 14 18 2 6 5 3 1 0 4 24 28 27 25 23 22 26 0 9 13 12 10 8 7 11 31 35 34 32 30 29 33 19 17 15 14 18 16 20 5 3 1 0 4 2 6 27 25 23 22 26 24 28 0 12 10 8 7 11 9 13 34 32 30 29 33 31 35 15 14 18 16 20 19 17 1 0 4 2 6 5 3 23 22 26 24 28 27 25 0 8 7 11 9 13 12 10 30 29 33 31 35 34 32 18 16 20 19 17 15 14 4 2 6 5 3 1 0 26 24 28 27 25 23 22 0 11 9 13 12 10 8 7 33 31 35 34 32 30 29 28 27 25 23 22 26 24 13 12 10 8 7 11 9 35 34 32 30 29 33 31 0 20 19 17 15 14 18 16 6 5 3 1 0 4 2 25 23 22 26 24 28 27 10 8 7 11 9 13 12 32 30 29 33 31 35 34 0 17 15 14 18 16 20 19 3 1 0 4 2 6 5 22 26 24 28 27 25 23 7 11 9 13 12 10 8 29 33 31 35 34 32 30 0 14 18 16 20 19 17 15 0 4 2 6 5 3 1 24 28 27 25 23 22 26 9 13 12 10 8 7 11 31 35 34 32 30 29 33 0 16 20 19 17 15 14 18 2 6 5 3 1 0 4 27 25 23 22 26 24 28 12 10 8 7 11 9 13 34 32 30 29 33 31 35 0 19 17 15 14 18 16 20 5 3 1 0 4 2 6 23 22 26 24 28 27 25 8 7 11 9 13 12 10 30 29 33 31 35 34 32 0 15 14 18 16 20 19 17 1 0 4 2 6 5 3 26 24 28 27 25 23 22 11 9 13 12 10 8 7 33 31 35 34 32 30 29 0 18 16 20 19 17 15 14 4 2 6 5 3 1 0
The Intermediate Square has to be transformed to a Self Orthogonal Latin Diagonal Square, which can be achieved by means of a set of five order 9 Auxiliary Latin Diagonal Squares: |
A91
29 31 34 35 21 33 32 30 32 30 21 33 34 35 29 31 30 34 31 21 35 32 33 29 33 29 35 32 31 21 30 34 31 35 29 34 33 30 21 32 21 32 33 30 29 34 31 35 34 21 30 31 32 29 35 33 35 33 32 29 30 31 34 21 A92
22 24 27 28 21 26 25 23 25 23 21 26 27 28 22 24 23 27 24 21 28 25 26 22 26 22 28 25 24 21 23 27 24 28 22 27 26 23 21 25 21 25 26 23 22 27 24 28 27 21 23 24 25 22 28 26 28 26 25 22 23 24 27 21 A93
14 16 19 20 21 18 17 15 17 15 21 18 19 20 14 16 15 19 16 21 20 17 18 14 18 14 20 17 16 21 15 19 16 20 14 19 18 15 21 17 21 17 18 15 14 19 16 20 19 21 15 16 17 14 20 18 20 18 17 14 15 16 19 21 A94
21 8 11 12 13 10 9 7 9 7 13 10 11 12 21 8 7 11 8 13 12 9 10 21 10 21 12 9 8 13 7 11 8 12 21 11 10 7 13 9 13 9 10 7 21 11 8 12 11 13 7 8 9 21 12 10 12 10 9 21 7 8 11 13 A95
21 1 4 5 6 3 2 0 2 0 6 3 4 5 21 1 0 4 1 6 5 2 3 21 3 21 5 2 1 6 0 4 1 5 21 4 3 0 6 2 6 2 3 0 21 4 1 5 4 6 0 1 2 21 5 3 5 3 2 21 0 1 4 6
The five Auxiliary Squares are based on the five sub series defined above and the number 21.
|
Step 3
29 31 34 35 21 33 32 20 19 17 15 14 18 16 6 5 3 1 0 4 2 30 28 27 25 23 22 26 24 13 12 10 8 7 11 9 32 30 21 33 34 35 29 17 15 14 18 16 20 19 3 1 0 4 2 6 5 31 25 23 22 26 24 28 27 10 8 7 11 9 13 12 30 34 31 21 35 32 33 14 18 16 20 19 17 15 0 4 2 6 5 3 1 29 22 26 24 28 27 25 23 7 11 9 13 12 10 8 33 29 35 32 31 21 30 16 20 19 17 15 14 18 2 6 5 3 1 0 4 34 24 28 27 25 23 22 26 9 13 12 10 8 7 11 31 35 29 34 33 30 21 19 17 15 14 18 16 20 5 3 1 0 4 2 6 32 27 25 23 22 26 24 28 12 10 8 7 11 9 13 21 32 33 30 29 34 31 15 14 18 16 20 19 17 1 0 4 2 6 5 3 35 23 22 26 24 28 27 25 8 7 11 9 13 12 10 34 21 30 31 32 29 35 18 16 20 19 17 15 14 4 2 6 5 3 1 0 33 26 24 28 27 25 23 22 11 9 13 12 10 8 7 6 5 3 1 0 4 2 22 24 27 28 21 26 25 13 12 10 8 7 11 9 23 35 34 32 30 29 33 31 20 19 17 15 14 18 16 3 1 0 4 2 6 5 25 23 21 26 27 28 22 10 8 7 11 9 13 12 24 32 30 29 33 31 35 34 17 15 14 18 16 20 19 0 4 2 6 5 3 1 23 27 24 21 28 25 26 7 11 9 13 12 10 8 22 29 33 31 35 34 32 30 14 18 16 20 19 17 15 2 6 5 3 1 0 4 26 22 28 25 24 21 23 9 13 12 10 8 7 11 27 31 35 34 32 30 29 33 16 20 19 17 15 14 18 5 3 1 0 4 2 6 24 28 22 27 26 23 21 12 10 8 7 11 9 13 25 34 32 30 29 33 31 35 19 17 15 14 18 16 20 1 0 4 2 6 5 3 21 25 26 23 22 27 24 8 7 11 9 13 12 10 28 30 29 33 31 35 34 32 15 14 18 16 20 19 17 4 2 6 5 3 1 0 27 21 23 24 25 22 28 11 9 13 12 10 8 7 26 33 31 35 34 32 30 29 18 16 20 19 17 15 14 13 12 10 8 7 11 9 35 34 32 30 29 33 31 14 16 19 20 21 18 17 15 6 5 3 1 0 4 2 28 27 25 23 22 26 24 10 8 7 11 9 13 12 32 30 29 33 31 35 34 17 15 21 18 19 20 14 16 3 1 0 4 2 6 5 25 23 22 26 24 28 27 7 11 9 13 12 10 8 29 33 31 35 34 32 30 15 19 16 21 20 17 18 14 0 4 2 6 5 3 1 22 26 24 28 27 25 23 9 13 12 10 8 7 11 31 35 34 32 30 29 33 18 14 20 17 16 21 15 19 2 6 5 3 1 0 4 24 28 27 25 23 22 26 12 10 8 7 11 9 13 34 32 30 29 33 31 35 16 20 14 19 18 15 21 17 5 3 1 0 4 2 6 27 25 23 22 26 24 28 8 7 11 9 13 12 10 30 29 33 31 35 34 32 21 17 18 15 14 19 16 20 1 0 4 2 6 5 3 23 22 26 24 28 27 25 11 9 13 12 10 8 7 33 31 35 34 32 30 29 19 21 15 16 17 14 20 18 4 2 6 5 3 1 0 26 24 28 27 25 23 22 35 33 32 29 30 31 34 28 26 25 22 23 24 27 20 18 17 14 15 16 19 21 8 11 12 13 10 9 7 1 4 5 6 3 2 0 20 19 17 15 14 18 16 6 5 3 1 0 4 2 28 27 25 23 22 26 24 9 7 13 10 11 12 21 8 35 34 32 30 29 33 31 17 15 14 18 16 20 19 3 1 0 4 2 6 5 25 23 22 26 24 28 27 7 11 8 13 12 9 10 21 32 30 29 33 31 35 34 14 18 16 20 19 17 15 0 4 2 6 5 3 1 22 26 24 28 27 25 23 10 21 12 9 8 13 7 11 29 33 31 35 34 32 30 16 20 19 17 15 14 18 2 6 5 3 1 0 4 24 28 27 25 23 22 26 8 12 21 11 10 7 13 9 31 35 34 32 30 29 33 19 17 15 14 18 16 20 5 3 1 0 4 2 6 27 25 23 22 26 24 28 13 9 10 7 21 11 8 12 34 32 30 29 33 31 35 15 14 18 16 20 19 17 1 0 4 2 6 5 3 23 22 26 24 28 27 25 11 13 7 8 9 21 12 10 30 29 33 31 35 34 32 18 16 20 19 17 15 14 4 2 6 5 3 1 0 26 24 28 27 25 23 22 12 10 9 21 7 8 11 13 33 31 35 34 32 30 29 28 27 25 23 22 26 24 13 12 10 8 7 11 9 35 34 32 30 29 33 31 2 20 19 17 15 14 18 16 0 6 3 4 5 21 1 25 23 22 26 24 28 27 10 8 7 11 9 13 12 32 30 29 33 31 35 34 0 17 15 14 18 16 20 19 4 1 6 5 2 3 21 22 26 24 28 27 25 23 7 11 9 13 12 10 8 29 33 31 35 34 32 30 3 14 18 16 20 19 17 15 21 5 2 1 6 0 4 24 28 27 25 23 22 26 9 13 12 10 8 7 11 31 35 34 32 30 29 33 1 16 20 19 17 15 14 18 5 21 4 3 0 6 2 27 25 23 22 26 24 28 12 10 8 7 11 9 13 34 32 30 29 33 31 35 6 19 17 15 14 18 16 20 2 3 0 21 4 1 5 23 22 26 24 28 27 25 8 7 11 9 13 12 10 30 29 33 31 35 34 32 4 15 14 18 16 20 19 17 6 0 1 2 21 5 3 26 24 28 27 25 23 22 11 9 13 12 10 8 7 33 31 35 34 32 30 29 5 18 16 20 19 17 15 14 3 2 21 0 1 4 6
The order 36 Self Orthogonal Composed Latin Diagonal Square shown above is ready to be used for
the construction of an order 36 Composed Simple Magic Square.
|
![]() |
About the Author |