Office Applications and Entertainment, Magic Squares |
||
![]() |
Attachment 9.6.1 | About the Author |
Bordered Magic Square (9 x 9) with Diamond Inlay (3 x 3)
Based on a Self Orthogonal Diagonal Latin Square A
A
3 5 0 6 7 8 2 4 1 4 8 7 3 0 1 5 6 2 5 3 2 8 6 4 0 1 7 8 0 4 1 5 3 7 2 6 0 1 5 2 4 6 3 7 8 2 6 1 5 3 7 4 8 0 1 7 8 4 2 0 6 5 3 6 2 3 7 8 5 1 0 4 7 4 6 0 1 2 8 3 5 B = T(A)
3 4 5 8 0 2 1 6 7 5 8 3 0 1 6 7 2 4 0 7 2 4 5 1 8 3 6 6 3 8 1 2 5 4 7 0 7 0 6 5 4 3 2 8 1 8 1 4 3 6 7 0 5 2 2 5 0 7 3 4 6 1 8 4 6 1 2 7 8 5 0 3 1 2 7 6 8 0 3 4 5 M = A + 9 * B + 1
31 42 46 79 8 27 12 59 65 50 81 35 4 10 56 69 25 39 6 67 21 45 52 14 73 29 62 63 28 77 11 24 49 44 66 7 64 2 60 48 41 34 22 80 18 75 16 38 33 58 71 5 54 19 20 53 9 68 30 37 61 15 76 43 57 13 26 72 78 47 1 32 17 23 70 55 74 3 36 40 51
The total number of subject order 9 Self Orthogonal Magic Squares is 128 and can be generated within 830 seconds (ref. SelfOrth9c).
![]() |
About the Author |