Office Applications and Entertainment, Magic Squares

Vorige Pagina Attachment 9.6.6 About the Author

Compact Ultra Magic Square (9 x 9), Third-rows and Third-columns Sum to s1/3
Based on a Self Orthogonal Diagonal Latin Square A


A
1 8 3 4 2 6 7 5 0
5 0 7 8 3 1 2 6 4
6 4 2 0 7 5 3 1 8
2 6 4 5 0 7 8 3 1
3 1 8 6 4 2 0 7 5
7 5 0 1 8 3 4 2 6
0 7 5 3 1 8 6 4 2
4 2 6 7 5 0 1 8 3
8 3 1 2 6 4 5 0 7
B = T(A)
1 5 6 2 3 7 0 4 8
8 0 4 6 1 5 7 2 3
3 7 2 4 8 0 5 6 1
4 8 0 5 6 1 3 7 2
2 3 7 0 4 8 1 5 6
6 1 5 7 2 3 8 0 4
7 2 3 8 0 4 6 1 5
5 6 1 3 7 2 4 8 0
0 4 8 1 5 6 2 3 7
M = A + 9 * B + 1
11 54 58 23 30 70 8 42 73
78 1 44 63 13 47 66 25 32
34 68 21 37 80 6 49 56 18
39 79 5 51 55 17 36 67 20
22 29 72 7 41 75 10 53 60
62 15 46 65 27 31 77 3 43
64 26 33 76 2 45 61 14 48
50 57 16 35 69 19 38 81 4
9 40 74 12 52 59 24 28 71

The total number of subject order 9 Self Orthogonal Magic Squares is 64 and can be generated within 920 seconds (ref. SelfOrth9c).


Vorige Pagina About the Author