| 
24.0 Magic Squares, Higher Order, Composed 
 
 
24.1 Introduction, Misc. Sub Squares (2)
 
 
In Section 9.9.2 
Magic Squares of the 9th order could be constructed 
based on a set of 9 Magic Squares of the 3th order, 
each containing 9 non-consecutive integers, with corresponding Magic Sum. 
 Next sections show comparable sets of (Pan) Magic Squares, enabling the construction of  
12th, 
15th, 
16th, 
18th 
and a few higher order Magic Squares.
 
 
 
24.2 Magic Squares (12 x 12)
 
 
For 12th order Magic Squares, following set of 16 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found: 
 
|  | A1 |  | A2 
| 48 | 128 | 16 |  
| 32 | 64 | 96 |  
| 112 | 0 | 80 |  |  
| B 
| 12 | 13 | 3 | 6 |  
| 7 | 2 | 16 | 9 |  
| 14 | 11 | 5 | 4 |  
| 1 | 8 | 10 | 15 |  | C 
| 
| 60 | 140 | 28 |  
| 44 | 76 | 108 |  
| 124 | 12 | 92 |  | 
| 61 | 141 | 29 |  
| 45 | 77 | 109 |  
| 125 | 13 | 93 |  | 
| 51 | 131 | 19 |  
| 35 | 67 | 99 |  
| 115 | 3 | 83 |  | 
| 54 | 134 | 22 |  
| 38 | 70 | 102 |  
| 118 | 6 | 86 |  |  
| 
| 55 | 135 | 23 |  
| 39 | 71 | 103 |  
| 119 | 7 | 87 |  | 
| 50 | 130 | 18 |  
| 34 | 66 | 98 |  
| 114 | 2 | 82 |  | 
| 64 | 144 | 32 |  
| 48 | 80 | 112 |  
| 128 | 16 | 96 |  | 
| 57 | 137 | 25 |  
| 41 | 73 | 105 |  
| 121 | 9 | 89 |  |  
| 
| 62 | 142 | 30 |  
| 46 | 78 | 110 |  
| 126 | 14 | 94 |  | 
| 59 | 139 | 27 |  
| 43 | 75 | 107 |  
| 123 | 11 | 91 |  | 
| 53 | 133 | 21 |  
| 37 | 69 | 101 |  
| 117 | 5 | 85 |  | 
| 52 | 132 | 20 |  
| 36 | 68 | 100 |  
| 116 | 4 | 84 |  |  
| 
| 49 | 129 | 17 |  
| 33 | 65 | 97 |  
| 113 | 1 | 81 |  | 
| 56 | 136 | 24 |  
| 40 | 72 | 104 |  
| 120 | 8 | 88 |  | 
| 58 | 138 | 26 |  
| 42 | 74 | 106 |  
| 122 | 10 | 90 |  | 
| 63 | 143 | 31 |  
| 47 | 79 | 111 |  
| 127 | 15 | 95 |  |  |  
| MC's 
| 228 | 231 | 201 | 210 |  
| 213 | 198 | 240 | 219 |  
| 234 | 225 | 207 | 204 |  
| 195 | 216 | 222 | 237 |  | 
 
With 8 possible squares for each square Ci (i = 1 ... 16), the resulting number of
Magic Squares of the 12th order with Magic Sum s12 = 870 will be:
 
  either 384 * 816 = 1,08 1017 
for Pan    Magic Square B; 
  or    7040 * 816 = 1,98 1018 
for Simple Magic Square B. 
 It can be noticed that if B is Associated, the resulting square C will be Associated as well.
 
 
 
Alternatively, following set of 9 Magic Squares 
- each containing 16 non-consecutive integers - with corresponding Magic Sum, can be found: 
 
|  | A1 
| 12 | 13 | 3 | 6 |  
| 7 | 2 | 16 | 9 |  
| 14 | 11 | 5 | 4 |  
| 1 | 8 | 10 | 15 |  |  | A2 
| 99 | 108 | 18 | 45 |  
| 54 | 9 | 135 | 72 |  
| 117 | 90 | 36 | 27 |  
| 0 | 63 | 81 | 126 |  |  
| B | C 
| 
| 103 | 112 | 22 | 49 |  
| 58 | 13 | 139 | 76 |  
| 121 | 94 | 40 | 31 |  
| 4 | 67 | 85 | 130 |  | 
| 108 | 117 | 27 | 54 |  
| 63 | 18 | 144 | 81 |  
| 126 | 99 | 45 | 36 |  
| 9 | 72 | 90 | 135 |  | 
| 101 | 110 | 20 | 47 |  
| 56 | 11 | 137 | 74 |  
| 119 | 92 | 38 | 29 |  
| 2 | 65 | 83 | 128 |  |  
| 
| 102 | 111 | 21 | 48 |  
| 57 | 12 | 138 | 75 |  
| 120 | 93 | 39 | 30 |  
| 3 | 66 | 84 | 129 |  | 
| 104 | 113 | 23 | 50 |  
| 59 | 14 | 140 | 77 |  
| 122 | 95 | 41 | 32 |  
| 5 | 68 | 86 | 131 |  | 
| 106 | 115 | 25 | 52 |  
| 61 | 16 | 142 | 79 |  
| 124 | 97 | 43 | 34 |  
| 7 | 70 | 88 | 133 |  |  
| 
| 107 | 116 | 26 | 53 |  
| 62 | 17 | 143 | 80 |  
| 125 | 98 | 44 | 35 |  
| 8 | 71 | 89 | 134 |  | 
| 100 | 109 | 19 | 46 |  
| 55 | 10 | 136 | 73 |  
| 118 | 91 | 37 | 28 |  
| 1 | 64 | 82 | 127 |  | 
| 105 | 114 | 24 | 51 |  
| 60 | 15 | 141 | 78 |  
| 123 | 96 | 42 | 33 |  
| 6 | 69 | 87 | 132 |  |  |  
| MC's 
| 286 | 306 | 278 |  
| 282 | 290 | 298 |  
| 302 | 274 | 294 |  | 
 
With 8 possible squares for square B, the resulting number of
Magic Squares of the 12th order with Magic Sum s12 = 870 will be:
 
  either 8 *  3849 = 1,45 1024 
for Pan    Magic Squares Ci (i = 1 ... 9); 
  or     8 * 70409 = 3,40 1035 
for Simple Magic Squares Ci (i = 1 ... 9). 
 It can be noticed that if Ci is Associated, the resulting square C will be Associated as well.
 
 
 
24.3 Magic Squares (15 x 15)
 
 
For 15th order Magic Squares, 
following set of 25 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found: 
 
C
| B 
| 12 | 6 | 5 | 24 | 18 |  
| 4 | 23 | 17 | 11 | 10 |  
| 16 | 15 | 9 | 3 | 22 |  
| 8 | 2 | 21 | 20 | 14 |  
| 25 | 19 | 13 | 7 | 1 |  | A1 | A2 
| 75 | 200 | 25 |  
| 50 | 100 | 150 |  
| 175 | 0 | 125 |  | MC's 
| 336 | 318 | 315 | 372 | 354 |  
| 312 | 369 | 351 | 333 | 330 |  
| 348 | 345 | 327 | 309 | 366 |  
| 324 | 306 | 363 | 360 | 342 |  
| 375 | 357 | 339 | 321 | 303 |  |  
| 
| 87 | 212 | 37 |  
| 62 | 112 | 162 |  
| 187 | 12 | 137 |  | 
| 81 | 206 | 31 |  
| 56 | 106 | 156 |  
| 181 | 6 | 131 |  | 
| 80 | 205 | 30 |  
| 55 | 105 | 155 |  
| 180 | 5 | 130 |  | 
| 99 | 224 | 49 |  
| 74 | 124 | 174 |  
| 199 | 24 | 149 |  | 
| 93 | 218 | 43 |  
| 68 | 118 | 168 |  
| 193 | 18 | 143 |  |  
| 
| 79 | 204 | 29 |  
| 54 | 104 | 154 |  
| 179 | 4 | 129 |  | 
| 98 | 223 | 48 |  
| 73 | 123 | 173 |  
| 198 | 23 | 148 |  | 
| 92 | 217 | 42 |  
| 67 | 117 | 167 |  
| 192 | 17 | 142 |  | 
| 86 | 211 | 36 |  
| 61 | 111 | 161 |  
| 186 | 11 | 136 |  | 
| 85 | 210 | 35 |  
| 60 | 110 | 160 |  
| 185 | 10 | 135 |  |  
| 
| 91 | 216 | 41 |  
| 66 | 116 | 166 |  
| 191 | 16 | 141 |  | 
| 90 | 215 | 40 |  
| 65 | 115 | 165 |  
| 190 | 15 | 140 |  | 
| 84 | 209 | 34 |  
| 59 | 109 | 159 |  
| 184 | 9 | 134 |  | 
| 78 | 203 | 28 |  
| 53 | 103 | 153 |  
| 178 | 3 | 128 |  | 
| 97 | 222 | 47 |  
| 72 | 122 | 172 |  
| 197 | 22 | 147 |  |  
| 
| 83 | 208 | 33 |  
| 58 | 108 | 158 |  
| 183 | 8 | 133 |  | 
| 77 | 202 | 27 |  
| 52 | 102 | 152 |  
| 177 | 2 | 127 |  | 
| 96 | 221 | 46 |  
| 71 | 121 | 171 |  
| 196 | 21 | 146 |  | 
| 95 | 220 | 45 |  
| 70 | 120 | 170 |  
| 195 | 20 | 145 |  | 
| 89 | 214 | 39 |  
| 64 | 114 | 164 |  
| 189 | 14 | 139 |  |  
| 
| 100 | 225 | 50 |  
| 75 | 125 | 175 |  
| 200 | 25 | 150 |  | 
| 94 | 219 | 44 |  
| 69 | 119 | 169 |  
| 194 | 19 | 144 |  | 
| 88 | 213 | 38 |  
| 63 | 113 | 163 |  
| 188 | 13 | 138 |  | 
| 82 | 207 | 32 |  
| 57 | 107 | 157 |  
| 182 | 7 | 132 |  | 
| 76 | 201 | 26 |  
| 51 | 101 | 151 |  
| 176 | 1 | 126 |  | 
 
With 8 possible squares for each square Ci (i = 1 ... 25), 
and 28800 possible squares for Pan Magic Square B,
the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be
28800 * 825 = 1,09 1027. 
 Att 24.6.01 Sht. 1, provides some additional examples of order 15 Magic Squares, composed of 25 order 3 Sub Squares for miscellaneous types Square B.
For enumeration base  reference is made to Section 5.8.
 
 
 
Alternatively, following set of 9 Magic Squares - each containing 25 non-consecutive integers - with corresponding Magic Sum, can be found: 
 
C
| B | A1 
| 12 | 6 | 5 | 24 | 18 |  
| 4 | 23 | 17 | 11 | 10 |  
| 16 | 15 | 9 | 3 | 22 |  
| 8 | 2 | 21 | 20 | 14 |  
| 25 | 19 | 13 | 7 | 1 |  | A2 
| 99 | 45 | 36 | 207 | 153 |  
| 27 | 198 | 144 | 90 | 81 |  
| 135 | 126 | 72 | 18 | 189 |  
| 63 | 9 | 180 | 171 | 117 |  
| 216 | 162 | 108 | 54 | 0 |  | MC's 
| 560 | 585 | 550 |  
| 555 | 565 | 575 |  
| 580 | 545 | 570 |  |  
| 
| 103 | 49 | 40 | 211 | 157 |  
| 31 | 202 | 148 | 94 | 85 |  
| 139 | 130 | 76 | 22 | 193 |  
| 67 | 13 | 184 | 175 | 121 |  
| 220 | 166 | 112 | 58 | 4 |  | 
| 108 | 54 | 45 | 216 | 162 |  
| 36 | 207 | 153 | 99 | 90 |  
| 144 | 135 | 81 | 27 | 198 |  
| 72 | 18 | 189 | 180 | 126 |  
| 225 | 171 | 117 | 63 | 9 |  | 
| 101 | 47 | 38 | 209 | 155 |  
| 29 | 200 | 146 | 92 | 83 |  
| 137 | 128 | 74 | 20 | 191 |  
| 65 | 11 | 182 | 173 | 119 |  
| 218 | 164 | 110 | 56 | 2 |  |  
| 
| 102 | 48 | 39 | 210 | 156 |  
| 30 | 201 | 147 | 93 | 84 |  
| 138 | 129 | 75 | 21 | 192 |  
| 66 | 12 | 183 | 174 | 120 |  
| 219 | 165 | 111 | 57 | 3 |  | 
| 104 | 50 | 41 | 212 | 158 |  
| 32 | 203 | 149 | 95 | 86 |  
| 140 | 131 | 77 | 23 | 194 |  
| 68 | 14 | 185 | 176 | 122 |  
| 221 | 167 | 113 | 59 | 5 |  | 
| 106 | 52 | 43 | 214 | 160 |  
| 34 | 205 | 151 | 97 | 88 |  
| 142 | 133 | 79 | 25 | 196 |  
| 70 | 16 | 187 | 178 | 124 |  
| 223 | 169 | 115 | 61 | 7 |  |  
| 
| 107 | 53 | 44 | 215 | 161 |  
| 35 | 206 | 152 | 98 | 89 |  
| 143 | 134 | 80 | 26 | 197 |  
| 71 | 17 | 188 | 179 | 125 |  
| 224 | 170 | 116 | 62 | 8 |  | 
| 100 | 46 | 37 | 208 | 154 |  
| 28 | 199 | 145 | 91 | 82 |  
| 136 | 127 | 73 | 19 | 190 |  
| 64 | 10 | 181 | 172 | 118 |  
| 217 | 163 | 109 | 55 | 1 |  | 
| 105 | 51 | 42 | 213 | 159 |  
| 33 | 204 | 150 | 96 | 87 |  
| 141 | 132 | 78 | 24 | 195 |  
| 69 | 15 | 186 | 177 | 123 |  
| 222 | 168 | 114 | 60 | 6 |  | 
 
With 8 possible squares for square B 
and 28800 possible squares for each Pan Magic Squares Ci (i = 1 ... 9)
the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be
8 * 288009 = 1,09 1041. 
 Att 24.6.01 Sht. 2, provides some additional examples of order 15 Magic Squares, composed of 9 order 5 Sub Squares for miscellaneous types Square C.
For enumeration base  reference is made to Section 5.8.
 
 
 
24.4 Magic Squares (16 x 16)
 
 
For 16th order Magic Squares, following set of 16 (Pan) Magic Squares - each containing 16 non-consecutive integers - with corresponding Magic Sum, can be found: 
 
C
| A1 
| 5 | 4 | 14 | 11 |  
| 10 | 15 | 1 | 8 |  
| 3 | 6 | 12 | 13 |  
| 16 | 9 | 7 | 2 |  | A2 
| 64 | 48 | 208 | 160 |  
| 144 | 224 | 0 | 112 |  
| 32 | 80 | 176 | 192 |  
| 240 | 128 | 96 | 16 |  | B 
| 12 | 13 | 3 | 6 |  
| 7 | 2 | 16 | 9 |  
| 14 | 11 | 5 | 4 |  
| 1 | 8 | 10 | 15 |  | MC's 
| 528 | 532 | 492 | 504 |  
| 508 | 488 | 544 | 516 |  
| 536 | 524 | 500 | 496 |  
| 484 | 512 | 520 | 540 |  |  
| 
| 76 | 60 | 220 | 172 |  
| 156 | 236 | 12 | 124 |  
| 44 | 92 | 188 | 204 |  
| 252 | 140 | 108 | 28 |  | 
| 77 | 61 | 221 | 173 |  
| 157 | 237 | 13 | 125 |  
| 45 | 93 | 189 | 205 |  
| 253 | 141 | 109 | 29 |  | 
| 67 | 51 | 211 | 163 |  
| 147 | 227 | 3 | 115 |  
| 35 | 83 | 179 | 195 |  
| 243 | 131 | 99 | 19 |  | 
| 70 | 54 | 214 | 166 |  
| 150 | 230 | 6 | 118 |  
| 38 | 86 | 182 | 198 |  
| 246 | 134 | 102 | 22 |  |  
| 
| 71 | 55 | 215 | 167 |  
| 151 | 231 | 7 | 119 |  
| 39 | 87 | 183 | 199 |  
| 247 | 135 | 103 | 23 |  | 
| 66 | 50 | 210 | 162 |  
| 146 | 226 | 2 | 114 |  
| 34 | 82 | 178 | 194 |  
| 242 | 130 | 98 | 18 |  | 
| 80 | 64 | 224 | 176 |  
| 160 | 240 | 16 | 128 |  
| 48 | 96 | 192 | 208 |  
| 256 | 144 | 112 | 32 |  | 
| 73 | 57 | 217 | 169 |  
| 153 | 233 | 9 | 121 |  
| 41 | 89 | 185 | 201 |  
| 249 | 137 | 105 | 25 |  |  
| 
| 78 | 62 | 222 | 174 |  
| 158 | 238 | 14 | 126 |  
| 46 | 94 | 190 | 206 |  
| 254 | 142 | 110 | 30 |  | 
| 75 | 59 | 219 | 171 |  
| 155 | 235 | 11 | 123 |  
| 43 | 91 | 187 | 203 |  
| 251 | 139 | 107 | 27 |  | 
| 69 | 53 | 213 | 165 |  
| 149 | 229 | 5 | 117 |  
| 37 | 85 | 181 | 197 |  
| 245 | 133 | 101 | 21 |  | 
| 68 | 52 | 212 | 164 |  
| 148 | 228 | 4 | 116 |  
| 36 | 84 | 180 | 196 |  
| 244 | 132 | 100 | 20 |  |  
| 
| 65 | 49 | 209 | 161 |  
| 145 | 225 | 1 | 113 |  
| 33 | 81 | 177 | 193 |  
| 241 | 129 | 97 | 17 |  | 
| 72 | 56 | 216 | 168 |  
| 152 | 232 | 8 | 120 |  
| 40 | 88 | 184 | 200 |  
| 248 | 136 | 104 | 24 |  | 
| 74 | 58 | 218 | 170 |  
| 154 | 234 | 10 | 122 |  
| 42 | 90 | 186 | 202 |  
| 250 | 138 | 106 | 26 |  | 
| 79 | 63 | 223 | 175 |  
| 159 | 239 | 15 | 127 |  
| 47 | 95 | 191 | 207 |  
| 255 | 143 | 111 | 31 |  | 
 
The resulting number of Magic Squares of the 16th order with Magic Sum s16 = 2056 can be determined for following 4 Cases:
 
  Square B Pan    Magic,
Squares Ci (i = 1 ... 16) 
Pan    Magic:
 384 *  38416 =   
8,58 1043 
  Square B Simple Magic,
Squares Ci (i = 1 ... 16)
Pan    Magic:
7040 *  38416 = 
1,57 1045 
  Square B Pan    Magic,
Squares Ci (i = 1 ... 16)
Simple Magic:
 384 * 704016 = 
1,40 1064 
  Square B Simple Magic,
Squares Ci (i = 1 ... 16)
Simple Magic:
7040 * 704016 = 
2,56 1065 
 If B and Ci are Pan Magic, the resulting square C will be Pan Magic as well.
 
 If B and Ci are Associated, the resulting square C will be Associated as well.
 
 
 
24.5 Magic Squares (18 x 18)
 
 
For 18th order Magic Squares, 
following set of 36 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found: 
 
C
| B 
| 26 | 35 | 1 | 19 | 6 | 24 |  
| 17 | 8 | 28 | 10 | 33 | 15 |  
| 30 | 12 | 14 | 23 | 25 | 7 |  
| 3 | 21 | 5 | 32 | 34 | 16 |  
| 31 | 22 | 27 | 9 | 2 | 20 |  
| 4 | 13 | 36 | 18 | 11 | 29 |  | A1 | A2 
| 108 | 288 | 36 |  
| 72 | 144 | 216 |  
| 252 | 0 | 180 |  | MC's 
| 510 | 537 | 435 | 489 | 450 | 504 |  
| 483 | 456 | 516 | 462 | 531 | 477 |  
| 522 | 468 | 474 | 501 | 507 | 453 |  
| 441 | 495 | 447 | 528 | 534 | 480 |  
| 525 | 498 | 513 | 459 | 438 | 492 |  
| 444 | 471 | 540 | 486 | 465 | 519 |  |  
| 
| 134 | 314 | 62 |  
| 98 | 170 | 242 |  
| 278 | 26 | 206 |  | 
| 143 | 323 | 71 |  
| 107 | 179 | 251 |  
| 287 | 35 | 215 |  | 
| 109 | 289 | 37 |  
| 73 | 145 | 217 |  
| 253 | 1 | 181 |  | 
| 127 | 307 | 55 |  
| 91 | 163 | 235 |  
| 271 | 19 | 199 |  | 
| 114 | 294 | 42 |  
| 78 | 150 | 222 |  
| 258 | 6 | 186 |  | 
| 132 | 312 | 60 |  
| 96 | 168 | 240 |  
| 276 | 24 | 204 |  |  
| 
| 125 | 305 | 53 |  
| 89 | 161 | 233 |  
| 269 | 17 | 197 |  | 
| 116 | 296 | 44 |  
| 80 | 152 | 224 |  
| 260 | 8 | 188 |  | 
| 136 | 316 | 64 |  
| 100 | 172 | 244 |  
| 280 | 28 | 208 |  | 
| 118 | 298 | 46 |  
| 82 | 154 | 226 |  
| 262 | 10 | 190 |  | 
| 141 | 321 | 69 |  
| 105 | 177 | 249 |  
| 285 | 33 | 213 |  | 
| 123 | 303 | 51 |  
| 87 | 159 | 231 |  
| 267 | 15 | 195 |  |  
| 
| 138 | 318 | 66 |  
| 102 | 174 | 246 |  
| 282 | 30 | 210 |  | 
| 120 | 300 | 48 |  
| 84 | 156 | 228 |  
| 264 | 12 | 192 |  | 
| 122 | 302 | 50 |  
| 86 | 158 | 230 |  
| 266 | 14 | 194 |  | 
| 131 | 311 | 59 |  
| 95 | 167 | 239 |  
| 275 | 23 | 203 |  | 
| 133 | 313 | 61 |  
| 97 | 169 | 241 |  
| 277 | 25 | 205 |  | 
| 115 | 295 | 43 |  
| 79 | 151 | 223 |  
| 259 | 7 | 187 |  |  
| 
| 111 | 291 | 39 |  
| 75 | 147 | 219 |  
| 255 | 3 | 183 |  | 
| 129 | 309 | 57 |  
| 93 | 165 | 237 |  
| 273 | 21 | 201 |  | 
| 113 | 293 | 41 |  
| 77 | 149 | 221 |  
| 257 | 5 | 185 |  | 
| 140 | 320 | 68 |  
| 104 | 176 | 248 |  
| 284 | 32 | 212 |  | 
| 142 | 322 | 70 |  
| 106 | 178 | 250 |  
| 286 | 34 | 214 |  | 
| 124 | 304 | 52 |  
| 88 | 160 | 232 |  
| 268 | 16 | 196 |  |  
| 
| 139 | 319 | 67 |  
| 103 | 175 | 247 |  
| 283 | 31 | 211 |  | 
| 130 | 310 | 58 |  
| 94 | 166 | 238 |  
| 274 | 22 | 202 |  | 
| 135 | 315 | 63 |  
| 99 | 171 | 243 |  
| 279 | 27 | 207 |  | 
| 117 | 297 | 45 |  
| 81 | 153 | 225 |  
| 261 | 9 | 189 |  | 
| 110 | 290 | 38 |  
| 74 | 146 | 218 |  
| 254 | 2 | 182 |  | 
| 128 | 308 | 56 |  
| 92 | 164 | 236 |  
| 272 | 20 | 200 |  |  
| 
| 112 | 292 | 40 |  
| 76 | 148 | 220 |  
| 256 | 4 | 184 |  | 
| 121 | 301 | 49 |  
| 85 | 157 | 229 |  
| 265 | 13 | 193 |  | 
| 144 | 324 | 72 |  
| 108 | 180 | 252 |  
| 288 | 36 | 216 |  | 
| 126 | 306 | 54 |  
| 90 | 162 | 234 |  
| 270 | 18 | 198 |  | 
| 119 | 299 | 47 |  
| 83 | 155 | 227 |  
| 263 | 11 | 191 |  | 
| 137 | 317 | 65 |  
| 101 | 173 | 245 |  
| 281 | 29 | 209 |  | 
 
With 8 possible squares for each square Ci (i = 1 ... 36), 
and 1.740.800 possible squares (Medjig Solutions) for Magic Square B 
the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be
1.740.800 * 836 = 6,58 1028. 
 
 
Alternatively, following set of 9 Magic Squares - each containing 36 non-consecutive integers - with corresponding Magic Sum, can be found: 
 
C
| B | A1 
| 26 | 35 | 1 | 19 | 6 | 24 |  
| 17 | 8 | 28 | 10 | 33 | 15 |  
| 30 | 12 | 14 | 23 | 25 | 7 |  
| 3 | 21 | 5 | 32 | 34 | 16 |  
| 31 | 22 | 27 | 9 | 2 | 20 |  
| 4 | 13 | 36 | 18 | 11 | 29 |  | A2 
| 225 | 306 | 0 | 162 | 45 | 207 |  
| 144 | 63 | 243 | 81 | 288 | 126 |  
| 261 | 99 | 117 | 198 | 216 | 54 |  
| 18 | 180 | 36 | 279 | 297 | 135 |  
| 270 | 189 | 234 | 72 | 9 | 171 |  
| 27 | 108 | 315 | 153 | 90 | 252 |  | MC's 
| 969 | 999 | 957 |  
| 963 | 975 | 987 |  
| 993 | 951 | 981 |  |  
| 
| 229 | 310 | 4 | 166 | 49 | 211 |  
| 148 | 67 | 247 | 85 | 292 | 130 |  
| 265 | 103 | 121 | 202 | 220 | 58 |  
| 22 | 184 | 40 | 283 | 301 | 139 |  
| 274 | 193 | 238 | 76 | 13 | 175 |  
| 31 | 112 | 319 | 157 | 94 | 256 |  | 
| 234 | 315 | 9 | 171 | 54 | 216 |  
| 153 | 72 | 252 | 90 | 297 | 135 |  
| 270 | 108 | 126 | 207 | 225 | 63 |  
| 27 | 189 | 45 | 288 | 306 | 144 |  
| 279 | 198 | 243 | 81 | 18 | 180 |  
| 36 | 117 | 324 | 162 | 99 | 261 |  | 
| 227 | 308 | 2 | 164 | 47 | 209 |  
| 146 | 65 | 245 | 83 | 290 | 128 |  
| 263 | 101 | 119 | 200 | 218 | 56 |  
| 20 | 182 | 38 | 281 | 299 | 137 |  
| 272 | 191 | 236 | 74 | 11 | 173 |  
| 29 | 110 | 317 | 155 | 92 | 254 |  |  
| 
| 228 | 309 | 3 | 165 | 48 | 210 |  
| 147 | 66 | 246 | 84 | 291 | 129 |  
| 264 | 102 | 120 | 201 | 219 | 57 |  
| 21 | 183 | 39 | 282 | 300 | 138 |  
| 273 | 192 | 237 | 75 | 12 | 174 |  
| 30 | 111 | 318 | 156 | 93 | 255 |  | 
| 230 | 311 | 5 | 167 | 50 | 212 |  
| 149 | 68 | 248 | 86 | 293 | 131 |  
| 266 | 104 | 122 | 203 | 221 | 59 |  
| 23 | 185 | 41 | 284 | 302 | 140 |  
| 275 | 194 | 239 | 77 | 14 | 176 |  
| 32 | 113 | 320 | 158 | 95 | 257 |  | 
| 232 | 313 | 7 | 169 | 52 | 214 |  
| 151 | 70 | 250 | 88 | 295 | 133 |  
| 268 | 106 | 124 | 205 | 223 | 61 |  
| 25 | 187 | 43 | 286 | 304 | 142 |  
| 277 | 196 | 241 | 79 | 16 | 178 |  
| 34 | 115 | 322 | 160 | 97 | 259 |  |  
| 
| 233 | 314 | 8 | 170 | 53 | 215 |  
| 152 | 71 | 251 | 89 | 296 | 134 |  
| 269 | 107 | 125 | 206 | 224 | 62 |  
| 26 | 188 | 44 | 287 | 305 | 143 |  
| 278 | 197 | 242 | 80 | 17 | 179 |  
| 35 | 116 | 323 | 161 | 98 | 260 |  | 
| 226 | 307 | 1 | 163 | 46 | 208 |  
| 145 | 64 | 244 | 82 | 289 | 127 |  
| 262 | 100 | 118 | 199 | 217 | 55 |  
| 19 | 181 | 37 | 280 | 298 | 136 |  
| 271 | 190 | 235 | 73 | 10 | 172 |  
| 28 | 109 | 316 | 154 | 91 | 253 |  | 
| 231 | 312 | 6 | 168 | 51 | 213 |  
| 150 | 69 | 249 | 87 | 294 | 132 |  
| 267 | 105 | 123 | 204 | 222 | 60 |  
| 24 | 186 | 42 | 285 | 303 | 141 |  
| 276 | 195 | 240 | 78 | 15 | 177 |  
| 33 | 114 | 321 | 159 | 96 | 258 |  | 
 
With 8 possible squares for square B 
and 1.740.800 possible squares (Medjig Solutions) for each Magic Squares Ci (i = 1 ... 9)
the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be
8 * 1.740.8009 = 1,17 1057. 
 
 
24.6 Magic Squares, Misc. Orders
 
 
Magic Squares composed out of Sub Squares with different Magic Sums are also referred to as Inlaid Magic Squares. 
 A few more examples of miscellaneous types of Composed Magic Squares are summarized in following table:
 |