Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

24.0 Magic Squares, Higher Order, Composed

24.1 Introduction, Misc. Sub Squares (2)

In Section 9.9.2 Magic Squares of the 9th order could be constructed based on a set of 9 Magic Squares of the 3th order, each containing 9 non-consecutive integers, with corresponding Magic Sum.

Next sections show comparable sets of (Pan) Magic Squares, enabling the construction of 12th, 15th, 16th, 18th and a few higher order Magic Squares.

24.2 Magic Squares (12 x 12)

For 12th order Magic Squares, following set of 16 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found:

A1
4 9 2
3 5 7
8 1 6
A2
48 128 16
32 64 96
112 0 80
B
12 13 3 6
7 2 16 9
14 11 5 4
1 8 10 15
C
60 140 28
44 76 108
124 12 92
61 141 29
45 77 109
125 13 93
51 131 19
35 67 99
115 3 83
54 134 22
38 70 102
118 6 86
55 135 23
39 71 103
119 7 87
50 130 18
34 66 98
114 2 82
64 144 32
48 80 112
128 16 96
57 137 25
41 73 105
121 9 89
62 142 30
46 78 110
126 14 94
59 139 27
43 75 107
123 11 91
53 133 21
37 69 101
117 5 85
52 132 20
36 68 100
116 4 84
49 129 17
33 65 97
113 1 81
56 136 24
40 72 104
120 8 88
58 138 26
42 74 106
122 10 90
63 143 31
47 79 111
127 15 95
MC's
228 231 201 210
213 198 240 219
234 225 207 204
195 216 222 237

With 8 possible squares for each square Ci (i = 1 ... 16), the resulting number of Magic Squares of the 12th order with Magic Sum s12 = 870 will be:

     either 384 * 816 = 1,08 1017 for Pan    Magic Square B;
     or    7040 * 816 = 1,98 1018 for Simple Magic Square B.

It can be noticed that if B is Associated, the resulting square C will be Associated as well.

Alternatively, following set of 9 Magic Squares - each containing 16 non-consecutive integers - with corresponding Magic Sum, can be found:

A1
12 13 3 6
7 2 16 9
14 11 5 4
1 8 10 15
A2
99 108 18 45
54 9 135 72
117 90 36 27
0 63 81 126
B
4 9 2
3 5 7
8 1 6
C
103 112 22 49
58 13 139 76
121 94 40 31
4 67 85 130
108 117 27 54
63 18 144 81
126 99 45 36
9 72 90 135
101 110 20 47
56 11 137 74
119 92 38 29
2 65 83 128
102 111 21 48
57 12 138 75
120 93 39 30
3 66 84 129
104 113 23 50
59 14 140 77
122 95 41 32
5 68 86 131
106 115 25 52
61 16 142 79
124 97 43 34
7 70 88 133
107 116 26 53
62 17 143 80
125 98 44 35
8 71 89 134
100 109 19 46
55 10 136 73
118 91 37 28
1 64 82 127
105 114 24 51
60 15 141 78
123 96 42 33
6 69 87 132
MC's
286 306 278
282 290 298
302 274 294

With 8 possible squares for square B, the resulting number of Magic Squares of the 12th order with Magic Sum s12 = 870 will be:

     either 8 *  3849 = 1,45 1024 for Pan    Magic Squares Ci (i = 1 ... 9);
     or     8 * 70409 = 3,40 1035 for Simple Magic Squares Ci (i = 1 ... 9).

It can be noticed that if Ci is Associated, the resulting square C will be Associated as well.

24.3 Magic Squares (15 x 15)

For 15th order Magic Squares, following set of 25 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found:

B
12 6 5 24 18
4 23 17 11 10
16 15 9 3 22
8 2 21 20 14
25 19 13 7 1
A1
4 9 2
3 5 7
8 1 6
A2
75 200 25
50 100 150
175 0 125
MC's
336 318 315 372 354
312 369 351 333 330
348 345 327 309 366
324 306 363 360 342
375 357 339 321 303
C
87 212 37
62 112 162
187 12 137
81 206 31
56 106 156
181 6 131
80 205 30
55 105 155
180 5 130
99 224 49
74 124 174
199 24 149
93 218 43
68 118 168
193 18 143
79 204 29
54 104 154
179 4 129
98 223 48
73 123 173
198 23 148
92 217 42
67 117 167
192 17 142
86 211 36
61 111 161
186 11 136
85 210 35
60 110 160
185 10 135
91 216 41
66 116 166
191 16 141
90 215 40
65 115 165
190 15 140
84 209 34
59 109 159
184 9 134
78 203 28
53 103 153
178 3 128
97 222 47
72 122 172
197 22 147
83 208 33
58 108 158
183 8 133
77 202 27
52 102 152
177 2 127
96 221 46
71 121 171
196 21 146
95 220 45
70 120 170
195 20 145
89 214 39
64 114 164
189 14 139
100 225 50
75 125 175
200 25 150
94 219 44
69 119 169
194 19 144
88 213 38
63 113 163
188 13 138
82 207 32
57 107 157
182 7 132
76 201 26
51 101 151
176 1 126

With 8 possible squares for each square Ci (i = 1 ... 25), and 28800 possible squares for Pan Magic Square B, the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be 28800 * 825 = 1,09 1027.

Att 24.6.01 Sht. 1, provides some additional examples of order 15 Magic Squares, composed of 25 order 3 Sub Squares for miscellaneous types Square B. For enumeration base reference is made to Section 5.8.

Alternatively, following set of 9 Magic Squares - each containing 25 non-consecutive integers - with corresponding Magic Sum, can be found:

B
4 9 2
3 5 7
8 1 6
A1
12 6 5 24 18
4 23 17 11 10
16 15 9 3 22
8 2 21 20 14
25 19 13 7 1
A2
99 45 36 207 153
27 198 144 90 81
135 126 72 18 189
63 9 180 171 117
216 162 108 54 0
MC's
560 585 550
555 565 575
580 545 570
C
103 49 40 211 157
31 202 148 94 85
139 130 76 22 193
67 13 184 175 121
220 166 112 58 4
108 54 45 216 162
36 207 153 99 90
144 135 81 27 198
72 18 189 180 126
225 171 117 63 9
101 47 38 209 155
29 200 146 92 83
137 128 74 20 191
65 11 182 173 119
218 164 110 56 2
102 48 39 210 156
30 201 147 93 84
138 129 75 21 192
66 12 183 174 120
219 165 111 57 3
104 50 41 212 158
32 203 149 95 86
140 131 77 23 194
68 14 185 176 122
221 167 113 59 5
106 52 43 214 160
34 205 151 97 88
142 133 79 25 196
70 16 187 178 124
223 169 115 61 7
107 53 44 215 161
35 206 152 98 89
143 134 80 26 197
71 17 188 179 125
224 170 116 62 8
100 46 37 208 154
28 199 145 91 82
136 127 73 19 190
64 10 181 172 118
217 163 109 55 1
105 51 42 213 159
33 204 150 96 87
141 132 78 24 195
69 15 186 177 123
222 168 114 60 6

With 8 possible squares for square B and 28800 possible squares for each Pan Magic Squares Ci (i = 1 ... 9) the resulting number of Magic Squares of the 15th order with Magic Sum s15 = 1695 will be 8 * 288009 = 1,09 1041.

Att 24.6.01 Sht. 2, provides some additional examples of order 15 Magic Squares, composed of 9 order 5 Sub Squares for miscellaneous types Square C. For enumeration base reference is made to Section 5.8.

24.4 Magic Squares (16 x 16)

For 16th order Magic Squares, following set of 16 (Pan) Magic Squares - each containing 16 non-consecutive integers - with corresponding Magic Sum, can be found:

A1
5 4 14 11
10 15 1 8
3 6 12 13
16 9 7 2
A2
64 48 208 160
144 224 0 112
32 80 176 192
240 128 96 16
B
12 13 3 6
7 2 16 9
14 11 5 4
1 8 10 15
MC's
528 532 492 504
508 488 544 516
536 524 500 496
484 512 520 540
C
76 60 220 172
156 236 12 124
44 92 188 204
252 140 108 28
77 61 221 173
157 237 13 125
45 93 189 205
253 141 109 29
67 51 211 163
147 227 3 115
35 83 179 195
243 131 99 19
70 54 214 166
150 230 6 118
38 86 182 198
246 134 102 22
71 55 215 167
151 231 7 119
39 87 183 199
247 135 103 23
66 50 210 162
146 226 2 114
34 82 178 194
242 130 98 18
80 64 224 176
160 240 16 128
48 96 192 208
256 144 112 32
73 57 217 169
153 233 9 121
41 89 185 201
249 137 105 25
78 62 222 174
158 238 14 126
46 94 190 206
254 142 110 30
75 59 219 171
155 235 11 123
43 91 187 203
251 139 107 27
69 53 213 165
149 229 5 117
37 85 181 197
245 133 101 21
68 52 212 164
148 228 4 116
36 84 180 196
244 132 100 20
65 49 209 161
145 225 1 113
33 81 177 193
241 129 97 17
72 56 216 168
152 232 8 120
40 88 184 200
248 136 104 24
74 58 218 170
154 234 10 122
42 90 186 202
250 138 106 26
79 63 223 175
159 239 15 127
47 95 191 207
255 143 111 31

The resulting number of Magic Squares of the 16th order with Magic Sum s16 = 2056 can be determined for following 4 Cases:

     Square B Pan    Magic, Squares Ci (i = 1 ... 16) Pan    Magic:  384 *  38416 = 8,58 1043
     Square B Simple Magic, Squares Ci (i = 1 ... 16) Pan    Magic: 7040 *  38416 = 1,57 1045
     Square B Pan    Magic, Squares Ci (i = 1 ... 16) Simple Magic:  384 * 704016 = 1,40 1064
     Square B Simple Magic, Squares Ci (i = 1 ... 16) Simple Magic: 7040 * 704016 = 2,56 1065

If B and Ci are Pan Magic, the resulting square C will be Pan Magic as well.

If B and Ci are Associated, the resulting square C will be Associated as well.

24.5 Magic Squares (18 x 18)

For 18th order Magic Squares, following set of 36 Magic Squares - each containing 9 non-consecutive integers - with corresponding Magic Sum, can be found:

B
26 35 1 19 6 24
17 8 28 10 33 15
30 12 14 23 25 7
3 21 5 32 34 16
31 22 27 9 2 20
4 13 36 18 11 29
A1
4 9 2
3 5 7
8 1 6
A2
108 288 36
72 144 216
252 0 180
MC's
510 537 435 489 450 504
483 456 516 462 531 477
522 468 474 501 507 453
441 495 447 528 534 480
525 498 513 459 438 492
444 471 540 486 465 519
C
134 314 62
98 170 242
278 26 206
143 323 71
107 179 251
287 35 215
109 289 37
73 145 217
253 1 181
127 307 55
91 163 235
271 19 199
114 294 42
78 150 222
258 6 186
132 312 60
96 168 240
276 24 204
125 305 53
89 161 233
269 17 197
116 296 44
80 152 224
260 8 188
136 316 64
100 172 244
280 28 208
118 298 46
82 154 226
262 10 190
141 321 69
105 177 249
285 33 213
123 303 51
87 159 231
267 15 195
138 318 66
102 174 246
282 30 210
120 300 48
84 156 228
264 12 192
122 302 50
86 158 230
266 14 194
131 311 59
95 167 239
275 23 203
133 313 61
97 169 241
277 25 205
115 295 43
79 151 223
259 7 187
111 291 39
75 147 219
255 3 183
129 309 57
93 165 237
273 21 201
113 293 41
77 149 221
257 5 185
140 320 68
104 176 248
284 32 212
142 322 70
106 178 250
286 34 214
124 304 52
88 160 232
268 16 196
139 319 67
103 175 247
283 31 211
130 310 58
94 166 238
274 22 202
135 315 63
99 171 243
279 27 207
117 297 45
81 153 225
261 9 189
110 290 38
74 146 218
254 2 182
128 308 56
92 164 236
272 20 200
112 292 40
76 148 220
256 4 184
121 301 49
85 157 229
265 13 193
144 324 72
108 180 252
288 36 216
126 306 54
90 162 234
270 18 198
119 299 47
83 155 227
263 11 191
137 317 65
101 173 245
281 29 209

With 8 possible squares for each square Ci (i = 1 ... 36), and 1.740.800 possible squares (Medjig Solutions) for Magic Square B the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be 1.740.800 * 836 = 6,58 1028.

Alternatively, following set of 9 Magic Squares - each containing 36 non-consecutive integers - with corresponding Magic Sum, can be found:

B
4 9 2
3 5 7
8 1 6
A1
26 35 1 19 6 24
17 8 28 10 33 15
30 12 14 23 25 7
3 21 5 32 34 16
31 22 27 9 2 20
4 13 36 18 11 29
A2
225 306 0 162 45 207
144 63 243 81 288 126
261 99 117 198 216 54
18 180 36 279 297 135
270 189 234 72 9 171
27 108 315 153 90 252
MC's
969 999 957
963 975 987
993 951 981
C
229 310 4 166 49 211
148 67 247 85 292 130
265 103 121 202 220 58
22 184 40 283 301 139
274 193 238 76 13 175
31 112 319 157 94 256
234 315 9 171 54 216
153 72 252 90 297 135
270 108 126 207 225 63
27 189 45 288 306 144
279 198 243 81 18 180
36 117 324 162 99 261
227 308 2 164 47 209
146 65 245 83 290 128
263 101 119 200 218 56
20 182 38 281 299 137
272 191 236 74 11 173
29 110 317 155 92 254
228 309 3 165 48 210
147 66 246 84 291 129
264 102 120 201 219 57
21 183 39 282 300 138
273 192 237 75 12 174
30 111 318 156 93 255
230 311 5 167 50 212
149 68 248 86 293 131
266 104 122 203 221 59
23 185 41 284 302 140
275 194 239 77 14 176
32 113 320 158 95 257
232 313 7 169 52 214
151 70 250 88 295 133
268 106 124 205 223 61
25 187 43 286 304 142
277 196 241 79 16 178
34 115 322 160 97 259
233 314 8 170 53 215
152 71 251 89 296 134
269 107 125 206 224 62
26 188 44 287 305 143
278 197 242 80 17 179
35 116 323 161 98 260
226 307 1 163 46 208
145 64 244 82 289 127
262 100 118 199 217 55
19 181 37 280 298 136
271 190 235 73 10 172
28 109 316 154 91 253
231 312 6 168 51 213
150 69 249 87 294 132
267 105 123 204 222 60
24 186 42 285 303 141
276 195 240 78 15 177
33 114 321 159 96 258

With 8 possible squares for square B and 1.740.800 possible squares (Medjig Solutions) for each Magic Squares Ci (i = 1 ... 9) the resulting number of Magic Squares of the 18th order with Magic Sum s18 = 2925 will be 8 * 1.740.8009 = 1,17 1057.

24.6 Magic Squares, Misc. Orders

Magic Squares composed out of Sub Squares with different Magic Sums are also referred to as Inlaid Magic Squares.

A few more examples of miscellaneous types of Composed Magic Squares are summarized in following table:

Main Square
Order

Square B

Square Ci

Attachment

Order

Type

Order

i

Type

15 x 15

5 x 5
3 x 3

Misc. Inalys
Simple

3 x 3
5 x 5

1 ... 25
1 ... 9

Simple
Misc. Inalys

Att 24.6.01 Sht. 1
Att 24.6.01 Sht. 2

20 x 20

5 x 5
4 x 4

Misc. Inalys
Pan Magic

4 x 4
5 x 5

1 ... 25
1 ... 16

Pan Magic
Misc. Inalys

Att 24.6.02 Sht. 1
Att 24.6.02 Sht. 2

21 x 21

7 x 7
3 x 3

Misc. Inalys
Simple

3 x 3
7 x 7

1 ... 49
1 ... 9

Simple
Misc. Inalys

Att 24.6.03 Sht. 1
Att 24.6.03 Sht. 2

24 x 24

6 x 6
4 x 4

Medjig, Conc.
Pan Magic

4 x 4
6 x 6

1 ... 36
1 ... 16

Pan Magic
Medjig, Conc.

Att 24.6.04 Sht. 1
Att 24.6.04 Sht. 2

25 x 25

5 x 5

Misc. Inalys

5 x 5

1 ... 25

Misc. Inalys

Att 24.6.05

Each composed square shown corresponds with numerous solutions, which can be obtained by selecting other possible solutions for square B or Ci.


Vorige Pagina Volgende Pagina Index About the Author