| 
12.10   Magic Squares (15 x 15)
 
 
12.10.1 Composed Magic Squares
 
Overlapping Sub Squares (1)
 
 
A classical Magic Square of order  15, with miscellaneous each other Overlapping Sub Squares is shown below:
 
Mc15 = 1695
| 156 | 154 | 85 | 69 | 149 | 65 | 123 | 49 | 167 | 50 | 125 | 164 | 165 | 52 | 122 |  
| 72 | 70 | 141 | 157 | 77 | 161 | 103 | 177 | 59 | 176 | 101 | 62 | 61 | 104 | 174 |  
| 71 | 155 | 38 | 36 | 186 | 192 | 142 | 18 | 86 | 206 | 201 | 19 | 119 | 183 | 43 |  
| 152 | 74 | 181 | 197 | 33 | 41 | 84 | 208 | 140 | 20 | 25 | 107 | 207 | 175 | 51 |  
| 67 | 159 | 40 | 34 | 188 | 190 | 1 | 219 | 4 | 120 | 221 | 213 | 13 | 100 | 126 |  
| 160 | 66 | 193 | 185 | 45 | 29 | 225 | 7 | 222 | 5 | 106 | 22 | 204 | 64 | 162 |  
| 170 | 56 | 202 | 24 | 218 | 8 | 112 | 117 | 110 | 215 | 11 | 205 | 21 | 124 | 102 |  
| 73 | 153 | 26 | 200 | 10 | 216 | 111 | 113 | 115 | 223 | 3 | 210 | 16 | 168 | 58 |  
| 96 | 130 | 30 | 196 | 17 | 209 | 116 | 109 | 114 | 2 | 224 | 15 | 211 | 47 | 179 |  
| 145 | 81 | 194 | 32 | 108 | 14 | 214 | 9 | 220 | 44 | 46 | 178 | 184 | 88 | 138 |  
| 131 | 95 | 23 | 203 | 212 | 118 | 12 | 217 | 6 | 171 | 191 | 37 | 53 | 137 | 89 |  
| 63 | 163 | 195 | 105 | 39 | 28 | 146 | 199 | 79 | 48 | 42 | 182 | 180 | 97 | 129 |  
| 54 | 172 | 121 | 31 | 187 | 198 | 80 | 27 | 147 | 189 | 173 | 55 | 35 | 132 | 94 |  
| 158 | 99 | 82 | 75 | 98 | 166 | 87 | 169 | 83 | 150 | 92 | 90 | 78 | 133 | 135 |  
| 127 | 68 | 144 | 151 | 128 | 60 | 139 | 57 | 143 | 76 | 134 | 136 | 148 | 91 | 93 | 
 
The Magic Square shown  above is composed out of:
 
One 3th order Magic Center Square C;
Two each other overlapping 5th order Eccentric Magic Squares A1 and A2;
Two each other overlapping 7th order Eccentric Magic Squares B1 and B2;
Two 4th order Pan Magic Squares PM1 and PM2;
Two 6th order Eccentric Magic Squares 
F1 and F2 with embedded 
PM1 and PM2;
Two 9th order Eccentric Magic Squares 
D1 and D2 with embedded 
B1 and B2;
 
The construction of order 15 Magic Squares with miscellaneous each other Overlapping Sub Squares has been described in detail 
in Section 11.2.2. 
 Attachment 14.9.8.2 shows a few order 15 Composed Magic Squares with Overlapping Sub Squares, as defined above.
 
 
 
Overlapping Sub Squares (2)
 
 
Alternatively order 15 Magic Squares, with two each other overlapping 8th order Sub Squares, can be constructed based on suitable selected Latin Sub Squares, as illustrated in Section 25.6.
 
Attachment 25.6.2 shows a few 15th order Associated Magic Squares with  8th order Overlapping Sub Squares (Composed).
Attachment 25.6.3 shows a few 15th order Associated Magic Squares with  8th order Overlapping Sub Squares (Composed, Magic Middle and Center Squares).
 
Each square shown corresponds with numerous solutions, which can be obtained by variation of the Latin Sub Squares.
 
 
12.10.2 Composed Magic Squares
 
Square Inlays Order 7 and 8
 
 
Associated Magic Squares of order 15 with Square Inlays of order 7 and 8 can be obtained by means of transformation of order 15 Composed Magic Squares,
as illustrated in Section 7.8.1 for order 7 Magic Squares.
 
Mc15 = 1695
| 225 | 119 | 8 | 32 | 196 | 28 | 183 | 189 | 47 | 138 | 78 | 133 | 91 | 76 | 152 |  
| 203 | 17 | 181 | 223 | 108 | 15 | 44 | 164 | 166 | 59 | 63 | 83 | 137 | 98 | 134 |  
| 106 | 13 | 33 | 210 | 29 | 188 | 212 | 58 | 90 | 151 | 153 | 123 | 111 | 165 | 53 |  
| 18 | 195 | 224 | 113 | 2 | 31 | 208 | 41 | 149 | 104 | 158 | 68 | 122 | 77 | 185 |  
| 14 | 38 | 197 | 16 | 193 | 213 | 120 | 173 | 61 | 115 | 103 | 73 | 75 | 136 | 168 |  
| 182 | 211 | 118 | 3 | 45 | 209 | 23 | 92 | 128 | 89 | 143 | 163 | 167 | 60 | 62 |  
| 43 | 198 | 30 | 194 | 218 | 107 | 1 | 74 | 150 | 135 | 93 | 148 | 88 | 179 | 37 |  
| 222 | 219 | 6 | 5 | 192 | 112 | 35 | 97 | 126 | 95 | 124 | 146 | 87 | 144 | 85 |  
| 9 | 12 | 215 | 216 | 36 | 116 | 187 | 84 | 145 | 86 | 147 | 125 | 94 | 127 | 96 |  
| 202 | 199 | 26 | 25 | 184 | 46 | 109 | 67 | 156 | 65 | 154 | 176 | 57 | 174 | 55 |  
| 19 | 22 | 205 | 206 | 40 | 178 | 121 | 54 | 175 | 56 | 177 | 155 | 64 | 157 | 66 |  
| 105 | 48 | 186 | 20 | 21 | 204 | 207 | 160 | 69 | 162 | 71 | 49 | 170 | 51 | 172 |  
| 117 | 180 | 42 | 201 | 200 | 27 | 24 | 171 | 52 | 169 | 50 | 72 | 161 | 70 | 159 |  
| 39 | 110 | 190 | 10 | 11 | 214 | 217 | 130 | 99 | 132 | 101 | 79 | 140 | 81 | 142 |  
| 191 | 114 | 34 | 221 | 220 | 7 | 4 | 141 | 82 | 139 | 80 | 102 | 131 | 100 | 129 | 
 
The Composed Semi Magic Square shown  above is composed out of:
 
One 7th order Ultra Magic Corner Square (s7 = 7 * s1 / 15), 
One 8th order Associated (Compact) Magic Corner Square (s8 = 8 * s1 / 15),  
Two Associated Magic Rectangles order 7 x 8.   
 
The Magic Corner Squares  
can be constructed by means of suitable selected order 7 and 8 Self Orthogonal Latin Squares, 
as illustrated in Attachment 12.10.1.
 The Latin Squares can be 
based on the order 7 and 8 Magic Lines for the integers 0 ... 14 as listed 
in Attachment 12.10.1a.
 
 The remainder of subject Composed Magic Squares can be completed with routine
MgcSqr15c1.
 
Attachment 12.10.1b shows miscellaneous order 15 Composed Semi Magic Square, which could be found with subject routine.  
Attachment 12.10.2 shows the resulting order 15 Associated Magic Squares with order 7 and 8 Square Inlays.  
 
Each square shown corresponds with numerous solutions, which can be obtained by variation of the (Latin) Sub Squares and the Rectangles.
 
 
12.10.3 Associated Magic Squares 
 
Associated Center Square Order 7 
 
 
Associated Magic Squares of order 15 with an Associated Center Square of order 7 can be obtained by means of transformation of order 15 Composed Magic Squares as illustrated in Section 9.7.5 for order 9 Magic Squares.
 
Mc15 = 1695
| 97 | 126 | 95 | 124 | 222 | 219 | 6 | 5 | 192 | 112 | 35 | 146 | 87 | 144 | 85 |  
| 84 | 145 | 86 | 147 | 9 | 12 | 215 | 216 | 36 | 116 | 187 | 125 | 94 | 127 | 96 |  
| 67 | 156 | 65 | 154 | 202 | 199 | 26 | 25 | 184 | 46 | 109 | 176 | 57 | 174 | 55 |  
| 54 | 175 | 56 | 177 | 19 | 22 | 205 | 206 | 40 | 178 | 121 | 155 | 64 | 157 | 66 |  
| 189 | 47 | 138 | 78 | 225 | 119 | 8 | 32 | 196 | 28 | 183 | 133 | 91 | 76 | 152 |  
| 164 | 166 | 59 | 63 | 203 | 17 | 181 | 223 | 108 | 15 | 44 | 83 | 137 | 98 | 134 |  
| 58 | 90 | 151 | 153 | 106 | 13 | 33 | 210 | 29 | 188 | 212 | 123 | 111 | 165 | 53 |  
| 41 | 149 | 104 | 158 | 18 | 195 | 224 | 113 | 2 | 31 | 208 | 68 | 122 | 77 | 185 |  
| 173 | 61 | 115 | 103 | 14 | 38 | 197 | 16 | 193 | 213 | 120 | 73 | 75 | 136 | 168 |  
| 92 | 128 | 89 | 143 | 182 | 211 | 118 | 3 | 45 | 209 | 23 | 163 | 167 | 60 | 62 |  
| 74 | 150 | 135 | 93 | 43 | 198 | 30 | 194 | 218 | 107 | 1 | 148 | 88 | 179 | 37 |  
| 160 | 69 | 162 | 71 | 105 | 48 | 186 | 20 | 21 | 204 | 207 | 49 | 170 | 51 | 172 |  
| 171 | 52 | 169 | 50 | 117 | 180 | 42 | 201 | 200 | 27 | 24 | 72 | 161 | 70 | 159 |  
| 130 | 99 | 132 | 101 | 39 | 110 | 190 | 10 | 11 | 214 | 217 | 79 | 140 | 81 | 142 |  
| 141 | 82 | 139 | 80 | 191 | 114 | 34 | 221 | 220 | 7 | 4 | 102 | 131 | 100 | 129 | 
 
Attachment 12.10.4 shows the Associated Magic Squares with order 7 Associated Center Squares,
corresponding with the Composed Semi Magic Squares as shown in Attachment 12.10.1b. 
 
 
12.10.4 Associated Magic Squares
 
Square Inlays Order 6 and 7 (overlapping)
 
 
The 15th order Associated Inlaid Magic Square shown below:
 
| Mc15 = 1695 
| 152 | 221 | 215 | 163 | 146 | 140 | 110 | 67 | 20 | 50 | 56 | 73 | 125 | 131 | 26 |  
| 162 | 129 | 201 | 119 | 12 | 83 | 168 | 31 | 224 | 46 | 104 | 136 | 181 | 29 | 70 |  
| 160 | 89 | 177 | 38 | 123 | 196 | 114 | 6 | 27 | 192 | 93 | 138 | 57 | 213 | 72 |  
| 157 | 203 | 108 | 1 | 84 | 171 | 44 | 132 | 21 | 54 | 144 | 99 | 186 | 216 | 75 |  
| 71 | 166 | 39 | 126 | 209 | 117 | 8 | 78 | 219 | 51 | 141 | 96 | 189 | 24 | 161 |  
| 68 | 111 | 14 | 87 | 173 | 33 | 121 | 204 | 18 | 183 | 147 | 102 | 48 | 222 | 164 |  
| 41 | 42 | 128 | 198 | 106 | 9 | 81 | 179 | 211 | 194 | 91 | 149 | 59 | 16 | 191 |  
| 61 | 3 | 76 | 174 | 36 | 134 | 207 | 113 | 19 | 92 | 190 | 52 | 150 | 223 | 165 |  
| 35 | 210 | 167 | 77 | 135 | 32 | 15 | 47 | 145 | 217 | 120 | 28 | 98 | 184 | 185 |  
| 62 | 4 | 178 | 124 | 79 | 43 | 208 | 22 | 105 | 193 | 53 | 139 | 212 | 115 | 158 |  
| 65 | 202 | 37 | 130 | 85 | 175 | 7 | 148 | 218 | 109 | 17 | 100 | 187 | 60 | 155 |  
| 151 | 10 | 40 | 127 | 82 | 172 | 205 | 94 | 182 | 55 | 142 | 225 | 118 | 23 | 69 |  
| 154 | 13 | 169 | 88 | 133 | 34 | 199 | 220 | 112 | 30 | 103 | 188 | 49 | 137 | 66 |  
| 156 | 197 | 45 | 90 | 122 | 180 | 2 | 195 | 58 | 143 | 214 | 107 | 25 | 97 | 64 |  
| 200 | 95 | 101 | 153 | 170 | 176 | 206 | 159 | 116 | 86 | 80 | 63 | 11 | 5 | 74 |  | Mc's | 
 
contains following inlays:
 
Two each  7th order Simple Magic Squares - Magic Sums s(1) = 743 and s(4) = 839 - with the center element in common,
Two each  6th order Simple Magic Squares - Magic Sums s(2) = 720 and s(3) = 636 - with symmetrical diagonals.
 
The relation between the Magic Sums s(1), s(2), s(3) and s(4) is: 
 
 s(1) = 14 * s1 / 15 - s(4)
 s(2) = 12 * s1 / 15 - s(3)
 
With s1 = 1695 the Magic Sum of the 15th order Inlaid Magic Square. 
 The Associated Border can be described by following linear equations:
 
a(217) =    - s1 / 15 + a(219) - s(3) + s(4)
a(216) =    - s1 / 15 + a(220) - s(3) + s(4)
a(215) =    - s1 / 15 + a(221) - s(3) + s(4)
a(214) =    - s1 / 15 + a(222) - s(3) + s(4)
a(213) =    - s1 / 15 + a(223) - s(3) + s(4) 
a(212) =    - s1 / 15 + a(224) - s(3) + s(4)
a(211) =      s1      - a(212) - a(213) - a(214) - a(215) - a(216) - a(217) - a(218) - a(219) +
                                                 - a(220) - a(221) - a(222) - a(223) - a(224) - a(225)
a(196) =      s1      - a(210) - s(3) - s(4)
a(181) =      s1      - a(195) - s(3) - s(4)
a(166) =      s1      - a(180) - s(3) - s(4)
a(151) =      s1      - a(165) - s(3) - s(4)
a(136) =      s1      - a(150) - s(3) - s(4)
a(121) =      s1      - a(135) - s(3) - s(4)
a(120) =      s1      - a( 15) - a(30) - a(45) - a(60)  - a(75)  - a( 90) - a(105) - a(135) +
                                               - a(150) - a(165) - a(180) - a(195) - a(210) - a(225)
| 
a( 1) = 2 * s1 / 15 - a(225)a( 2) = 2 * s1 / 15 - a(224)
 a( 3) = 2 * s1 / 15 - a(223)
 a( 4) = 2 * s1 / 15 - a(222)
 a( 5) = 2 * s1 / 15 - a(221)
 a( 6) = 2 * s1 / 15 - a(220)
 a( 7) = 2 * s1 / 15 - a(219)
 a( 8) = 2 * s1 / 15 - a(218)
 a( 9) = 2 * s1 / 15 - a(217)
 a(10) = 2 * s1 / 15 - a(216)
 
 
 | 
a(11) = 2 * s1 / 15 - a(215)a(12) = 2 * s1 / 15 - a(214)
 a(13) = 2 * s1 / 15 - a(213)
 a(14) = 2 * s1 / 15 - a(212)
 a(15) = 2 * s1 / 15 - a(211)
 a(16) = 2 * s1 / 15 - a(210)
 a(30) = 2 * s1 / 15 - a(196)
 a(31) = 2 * s1 / 15 - a(195)
 a(45) = 2 * s1 / 15 - a(181)
 | 
a( 46) = 2 * s1 / 15 - a(180)a( 60) = 2 * s1 / 15 - a(166)
 a( 61) = 2 * s1 / 15 - a(165)
 a( 75) = 2 * s1 / 15 - a(151)
 a( 76) = 2 * s1 / 15 - a(150)
 a( 90) = 2 * s1 / 15 - a(136)
 a( 91) = 2 * s1 / 15 - a(135)
 a(105) = 2 * s1 / 15 - a(121)
 a(106) = 2 * s1 / 15 - a(120)
 
 
 |  
Which can be incorporated in an optimised guessing routine MgcSqr15k1. 
 The Magic Center Squares can be constructed by means of suitable selected (Semi-) Latin Squares, based on resp. order 6 and 7 Magic Lines for the integers 0 ... 14 as shown in Attachment 12.10.5a.
 
 
 
Attachment 12.10.5b shows a few 15th order Inlaid Magic Squares
for miscellaneous possible Magic Sums s(3) and s(4).
 Each square shown corresponds with numerous solutions, which can be obtained by variation of the four inlays and the border.
 
 
 
12.10.5 Composed Magic Squares, Associated
 
Sub Squares Order 3
 
 
The 15th order Composed Magic Square shown below,
contains 25 each order 3 Magic Sub Squares. 
 The 25 Sub Squares contain each 9 consecutive integers, with corresponding Magic Sum (shown right).
 
| Mc15 = 1695 
| 
| 105 | 100 | 107 |  
| 106 | 104 | 102 |  
| 101 | 108 | 103 |  | 
| 51 | 46 | 53 |  
| 52 | 50 | 48 |  
| 47 | 54 | 49 |  | 
| 42 | 37 | 44 |  
| 43 | 41 | 39 |  
| 38 | 45 | 40 |  | 
| 213 | 208 | 215 |  
| 214 | 212 | 210 |  
| 209 | 216 | 211 |  | 
| 159 | 154 | 161 |  
| 160 | 158 | 156 |  
| 155 | 162 | 157 |  |  
| 
| 33 | 28 | 35 |  
| 34 | 32 | 30 |  
| 29 | 36 | 31 |  | 
| 204 | 199 | 206 |  
| 205 | 203 | 201 |  
| 200 | 207 | 202 |  | 
| 150 | 145 | 152 |  
| 151 | 149 | 147 |  
| 146 | 153 | 148 |  | 
| 96 | 91 | 98 |  
| 97 | 95 | 93 |  
| 92 | 99 | 94 |  | 
| 87 | 82 | 89 |  
| 88 | 86 | 84 |  
| 83 | 90 | 85 |  |  
| 
| 141 | 136 | 143 |  
| 142 | 140 | 138 |  
| 137 | 144 | 139 |  | 
| 132 | 127 | 134 |  
| 133 | 131 | 129 |  
| 128 | 135 | 130 |  | 
| 78 | 73 | 80 |  
| 79 | 77 | 75 |  
| 74 | 81 | 76 |  | 
| 24 | 19 | 26 |  
| 25 | 23 | 21 |  
| 20 | 27 | 22 |  | 
| 195 | 190 | 197 |  
| 196 | 194 | 192 |  
| 191 | 198 | 193 |  |  
| 
| 69 | 64 | 71 |  
| 70 | 68 | 66 |  
| 65 | 72 | 67 |  | 
| 15 | 10 | 17 |  
| 16 | 14 | 12 |  
| 11 | 18 | 13 |  | 
| 186 | 181 | 188 |  
| 187 | 185 | 183 |  
| 182 | 189 | 184 |  | 
| 177 | 172 | 179 |  
| 178 | 176 | 174 |  
| 173 | 180 | 175 |  | 
| 123 | 118 | 125 |  
| 124 | 122 | 120 |  
| 119 | 126 | 121 |  |  
| 
| 222 | 217 | 224 |  
| 223 | 221 | 219 |  
| 218 | 225 | 220 |  | 
| 168 | 163 | 170 |  
| 169 | 167 | 165 |  
| 164 | 171 | 166 |  | 
| 114 | 109 | 116 |  
| 115 | 113 | 111 |  
| 110 | 117 | 112 |  | 
| 60 | 55 | 62 |  
| 61 | 59 | 57 |  
| 56 | 63 | 58 |  |  |  | Mc3 
| 312 | 150 | 123 | 636 | 474 |  
| 96 | 609 | 447 | 285 | 258 |  
| 420 | 393 | 231 | 69 | 582 |  
| 204 | 42 | 555 | 528 | 366 |  
| 663 | 501 | 339 | 177 | 15 |  | 
 
Methods to construct Magic Squares composed of Magic Sub Squares have been discussed in detail
in Section 9.9.1.
 Att 18.4.01 Sht. 1, provides some additional examples of order 15 Magic Squares, 
composed of 25 order 3 Sub Squares.
 
 
 
12.10.6 Composed Magic Squares, Associated
 
Diamond Inlays Order 5
 
 
The 15th order Composed Inlaid Magic Square shown below,
contains nine each order 5 Sub Squares with Diamond Inlay. 
 The nine Sub Squares contain each 25 consecutive integers, with corresponding Magic Sum (shown right).
 
| Mc15 = 1695 
| 
| 150 | 143 | 135 | 132 | 130 |  
| 128 | 140 | 131 | 142 | 149 |  
| 139 | 129 | 138 | 147 | 137 |  
| 127 | 134 | 145 | 136 | 148 |  
| 146 | 144 | 141 | 133 | 126 |  | 
| 25 | 18 | 10 | 7 | 5 |  
| 3 | 15 | 6 | 17 | 24 |  
| 14 | 4 | 13 | 22 | 12 |  
| 2 | 9 | 20 | 11 | 23 |  
| 21 | 19 | 16 | 8 | 1 |  | 
| 200 | 193 | 185 | 182 | 180 |  
| 178 | 190 | 181 | 192 | 199 |  
| 189 | 179 | 188 | 197 | 187 |  
| 177 | 184 | 195 | 186 | 198 |  
| 196 | 194 | 191 | 183 | 176 |  |  
| 
| 175 | 168 | 160 | 157 | 155 |  
| 153 | 165 | 156 | 167 | 174 |  
| 164 | 154 | 163 | 172 | 162 |  
| 152 | 159 | 170 | 161 | 173 |  
| 171 | 169 | 166 | 158 | 151 |  | 
| 125 | 118 | 110 | 107 | 105 |  
| 103 | 115 | 106 | 117 | 124 |  
| 114 | 104 | 113 | 122 | 112 |  
| 102 | 109 | 120 | 111 | 123 |  
| 121 | 119 | 116 | 108 | 101 |  | 
| 75 | 68 | 60 | 57 | 55 |  
| 53 | 65 | 56 | 67 | 74 |  
| 64 | 54 | 63 | 72 | 62 |  
| 52 | 59 | 70 | 61 | 73 |  
| 71 | 69 | 66 | 58 | 51 |  |  
| 
| 50 | 43 | 35 | 32 | 30 |  
| 28 | 40 | 31 | 42 | 49 |  
| 39 | 29 | 38 | 47 | 37 |  
| 27 | 34 | 45 | 36 | 48 |  
| 46 | 44 | 41 | 33 | 26 |  | 
| 225 | 218 | 210 | 207 | 205 |  
| 203 | 215 | 206 | 217 | 224 |  
| 214 | 204 | 213 | 222 | 212 |  
| 202 | 209 | 220 | 211 | 223 |  
| 221 | 219 | 216 | 208 | 201 |  | 
| 100 | 93 | 85 | 82 | 80 |  
| 78 | 90 | 81 | 92 | 99 |  
| 89 | 79 | 88 | 97 | 87 |  
| 77 | 84 | 95 | 86 | 98 |  
| 96 | 94 | 91 | 83 | 76 |  |  | MC5 
| 690 | 65 | 940 |  
| 815 | 565 | 315 |  
| 190 | 1065 | 440 |  | 
 
Methods to construct Magic Squares composed of Magic Sub Squares have been discussed in detail
in Section 9.9.1.
 Att 18.4.01 Sht. 2, provides some additional examples of order 15 Magic Squares, 
composed of nine order 5 Sub Squares for miscellaneous types.
 
 
 
12.10.7 Concentric Magic Squares, Diamond Inlay Order 8
 
 
The 15th order Concentric Inlaid Magic Square shown below,
contains one each  8th order Diamond Inlay (s8 = 904).
 
Mc15 = 1695
| 54 | 120 | 146 | 148 | 152 | 154 | 156 | 225 | 158 | 64 | 62 | 60 | 58 | 56 | 82 |  
| 128 | 20 | 76 | 190 | 192 | 194 | 9 | 103 | 219 | 198 | 26 | 24 | 22 | 196 | 98 |  
| 130 | 88 | 218 | 112 | 12 | 201 | 117 | 15 | 107 | 5 | 224 | 222 | 10 | 138 | 96 |  
| 132 | 174 | 14 | 44 | 17 | 97 | 195 | 95 | 213 | 133 | 3 | 220 | 212 | 52 | 94 |  
| 134 | 176 | 16 | 173 | 171 | 23 | 121 | 29 | 169 | 215 | 63 | 53 | 210 | 50 | 92 |  
| 136 | 178 | 61 | 101 | 81 | 127 | 205 | 137 | 27 | 69 | 145 | 125 | 165 | 48 | 90 |  
| 140 | 183 | 115 | 153 | 91 | 51 | 49 | 207 | 83 | 175 | 135 | 73 | 111 | 43 | 86 |  
| 35 | 141 | 181 | 139 | 167 | 159 | 147 | 113 | 79 | 67 | 59 | 87 | 45 | 85 | 191 |  
| 126 | 37 | 151 | 47 | 77 | 71 | 143 | 19 | 177 | 155 | 149 | 179 | 75 | 189 | 100 |  
| 122 | 180 | 187 | 161 | 41 | 157 | 21 | 89 | 199 | 99 | 185 | 65 | 39 | 46 | 104 |  
| 118 | 184 | 18 | 193 | 163 | 203 | 105 | 197 | 57 | 11 | 55 | 33 | 208 | 42 | 108 |  
| 110 | 40 | 66 | 6 | 209 | 129 | 31 | 131 | 13 | 93 | 223 | 182 | 160 | 186 | 116 |  
| 102 | 38 | 216 | 114 | 214 | 25 | 109 | 211 | 119 | 221 | 2 | 4 | 8 | 188 | 124 |  
| 84 | 30 | 150 | 36 | 34 | 32 | 217 | 123 | 7 | 28 | 200 | 202 | 204 | 206 | 142 |  
| 144 | 106 | 80 | 78 | 74 | 72 | 70 | 1 | 68 | 162 | 164 | 166 | 168 | 170 | 172 | 
 
As the order 8 Diamond Inlay contain only odd numbers, the Concentric Inlaid Magic Square is a Lozenge Square.
 The method to generate order 15 Concentric Lozenge Squares with order 8 Diamond Inlays has been discussed in detail
in Section 18.8.3.
 
 Attachment Lozenge 15.2 shows a few more
order 15 Concentric Lozenge Squares with order 8 Diamond Inlays.
 
 
 
12.10.8 Summary
 
 
The obtained results regarding the miscellaneous types of order 15 Magic Squares as deducted and discussed in previous sections are summarised in following table:
 |