Office Applications and Entertainment, Magic Squares

Vorige Pagina Index About the Author

15.0    Special Magic Squares, Bimagic Squares, Part 2

        Exhibit 15.3, Gaston Tarry

15.3.1  Model 1

This method is based on the application of two Diagonal Euler Squares (B1/B2) as shown below:

B1
b-c+d a+c b+d a a+c+d b-c a+d b
a b+d a+c b-c+d b a+d b-c a+c+d
a+c+d b-c a+d b b-c+d a+c b+d a
b a+d b-c a+c+d a b+d a+c b-c+d
b-c a+c+d b a+d a+c b-c+d a b+d
a+d b a+c+d b-c b+d a b-c+d a+c
a+c b-c+d a b+d b-c a+c+d b a+d
b+d a b-c+d a+c a+d b a+c+d b-c

B2
cp-r(a-b) cp+cr cp+cs cp-r(a-b+c)+cs cp-r(a-b)+cs cp+cr+cs cp cp-r(a-b+c)
cp-r(a-b)+cs cp+cr+cs cp cp-r(a-b+c) cp-r(a-b) cp+cr cp+cs cp-r(a-b+c)+cs
cp+cr cp-r(a-b) cp-r(a-b+c)+cs cp+cs cp+cr+cs cp-r(a-b)+cs cp-r(a-b+c) cp
cp+cr+cs cp-r(a-b)+cs cp-r(a-b+c) cp cp+cr cp-r(a-b) cp-r(a-b+c)+cs cp+cs
cp cp-r(a-b+c) cp-r(a-b)+cs cp+cr+cs cp+cs cp-r(a-b+c)+cs cp-r(a-b) cp+cr
cp+cs cp-r(a-b+c)+cs cp-r(a-b) cp+cr cp cp-r(a-b+c) cp-r(a-b)+cs cp+cr+cs
cp-r(a-b+c) cp cp+cr+cs cp-r(a-b)+cs cp-r(a-b+c)+cs cp+cs cp+cr cp-r(a-b)
cp-r(a-b+c)+cs cp+cs cp+cr cp-r(a-b) cp-r(a-b+c) cp cp+cr+cs cp-r(a-b)+cs

With proper selected variables, the resulting square M1 = B1 + B2 will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a = 2, b = 5, c = 4, d = 2
      p = 2, r = 8, s = 4

B1
3 6 7 2 8 1 4 5
2 7 6 3 5 4 1 8
8 1 4 5 3 6 7 2
5 4 1 8 2 7 6 3
1 8 5 4 6 3 2 7
4 5 8 1 7 2 3 6
6 3 2 7 1 8 5 4
7 2 3 6 4 5 8 1
B2
32 40 24 16 48 56 8 0
48 56 8 0 32 40 24 16
40 32 16 24 56 48 0 8
56 48 0 8 40 32 16 24
8 0 48 56 24 16 32 40
24 16 32 40 8 0 48 56
0 8 56 48 16 24 40 32
16 24 40 32 0 8 56 48
M1 = B1 + B2
35 46 31 18 56 57 12 5
50 63 14 3 37 44 25 24
48 33 20 29 59 54 7 10
61 52 1 16 42 39 22 27
9 8 53 60 30 19 34 47
28 21 40 41 15 2 51 62
6 11 58 55 17 32 45 36
23 26 43 38 4 13 64 49

While varying the variables {a, b, c, d, p, r, s}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.

15.3.2  Model 2

This method is based on the application of two Diagonal Euler Squares (B1/B2) as shown below:

B1
a + c b-c a+d b+d a+c+d b-c+d a b
b a b-c+d a+c+d b+d a+d b-c a+c
b-c+d a+c+d b a b-c a+c b+d a+d
a+d b+d a+c b-c a b a+c+d b-c+d
b-c a+c b+d a+d b-c+d a+c+d b a
a b a+c+d b-c+d a+d b+d a+c b-c
a+c+d b-c+d a b a+c b-c a+d b+d
b+d a+d b-c a+c b a b-c+d a+c+d

B2
cp + cs cp+cr+cs cp cp+cr cp-r(a-b) +cs cp-r(a-b+c) +cs cp-r(a-b) cp-r(a-b+c)
cp-r(a-b) cp-r(a-b+c) cp-r(a-b) +cs cp-r(a-b+c) +cs cp cp+cr cp+cs cp+cr+cs
cp+cr+cs cp+cs cp + cr cp cp-r(a-b+c) +cs cp-r(a-b)+cs cp-r(a-b+c) cp-r(a-b)
cp-r(a-b+c) cp-r(a-b) cp-r(a-b+c) +cs cp-r(a-b) +cs cp+cr cp cp+cr+cs cp+cs
cp cp+cr cp+cs cp+cr+cs cp-r(a-b) cp-r(a-b+c) cp-r(a-b)+cs cp-r(a-b+c) +cs
cp-r(a-b)+cs cp-r(a-b+c) +cs cp-r(a-b) cp-r(a-b+c) cp+cs cp+cr+cs cp cp+cr
cp+cr cp cp+cr+cs cp+cs cp-r(a-b+c) cp-r(a-b) cp-r(a-b+c) +cs cp-r(a-b)+cs
cp-r(a-b+c)+cs cp-r(a-b) +cs cp-r(a-b+c) cp-r(a-b) cp+cr+cs cp+cs cp+cr cp

With proper selected variables, the resulting square M1 = B1 + B2 will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a = 1, b = 4, c =  1, d = 4
      p = 0, r = 8, s = 32

B1
2 3 5 8 6 7 1 4
4 1 7 6 8 5 3 2
7 6 4 1 3 2 8 5
5 8 2 3 1 4 6 7
3 2 8 5 7 6 4 1
1 4 6 7 5 8 2 3
6 7 1 4 2 3 5 8
8 5 3 2 4 1 7 6
B2
32 40 0 8 56 48 24 16
24 16 56 48 0 8 32 40
40 32 8 0 48 56 16 24
16 24 48 56 8 0 40 32
0 8 32 40 24 16 56 48
56 48 24 16 32 40 0 8
8 0 40 32 16 24 48 56
48 56 16 24 40 32 8 0
M1 = B1 + B2
34 43 5 16 62 55 25 20
28 17 63 54 8 13 35 42
47 38 12 1 51 58 24 29
21 32 50 59 9 4 46 39
3 10 40 45 31 22 60 49
57 52 30 23 37 48 2 11
14 7 41 36 18 27 53 64
56 61 19 26 44 33 15 6

While varying the variables {a, b, c, d, p, r, s}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.

15.3.3  Model 3

This method is based on the application of two Diagonal Euler Squares (B1/B2) as shown below:

B1
a+c a+d b-c b+d b b-c+d a a+c+d
a+c+d a b-c+d b b+d b-c a+d a+c
b-c+d b a+c+d a a+d a+c b+d b-c
b-c b+d a+c a+d a a+c+d b b-c+d
a+d a+c b+d b-c b-c+d b a+c+d a
a a+c+d b b-c+d b-c b+d a+c a+d
b b-c+d a a+c+d a+c a+d b-c b+d
b+d b-c a+d a+c a+c+d a b-c+d b

B2
cq-cr cq cp cp+cr cq+dr cq-cr+dr cp+cr+dr cp+dr
cp+cr+dr cp+dr cq+dr cq-cr+dr cp cp+cr cq-cr cq
cq cq-cr cp+cr cp cq-cr+dr cq+dr cp+dr cp+cr+dr
cp+dr cp+cr+dr cq-cr+dr cq+dr cp+cr cp cq cq-cr
cp cp+cr cq-cr cq cp+cr+dr cp+dr cq+dr cq-cr+dr
cq+dr cq-cr+dr cp+cr+dr cp+dr cq-cr cq cp cp+cr
cp+cr cp cq cq-cr cp+dr cp+cr+dr cq-cr+dr cq+dr
cq-cr+dr cq+dr cp+dr cp+cr+dr cq cq-cr cp+cr cp

With proper selected variables, the resulting square M1 = B1 + B2 will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a = 1, b =  4, c = 1, d = 4
      p = 0, q = 24, r = 8

B1
2 5 3 8 4 7 1 6
6 1 7 4 8 3 5 2
7 4 6 1 5 2 8 3
3 8 2 5 1 6 4 7
5 2 8 3 7 4 6 1
1 6 4 7 3 8 2 5
4 7 1 6 2 5 3 8
8 3 5 2 6 1 7 4
B2
16 24 0 8 56 48 40 32
40 32 56 48 0 8 16 24
24 16 8 0 48 56 32 40
32 40 48 56 8 0 24 16
0 8 16 24 40 32 56 48
56 48 40 32 16 24 0 8
8 0 24 16 32 40 48 56
48 56 32 40 24 16 8 0
M1 = B1 + B2
18 29 3 16 60 55 41 38
46 33 63 52 8 11 21 26
31 20 14 1 53 58 40 43
35 48 50 61 9 6 28 23
5 10 24 27 47 36 62 49
57 54 44 39 19 32 2 13
12 7 25 22 34 45 51 64
56 59 37 42 30 17 15 4

While varying the variables {a, b, c, d, p, q, r}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.

15.3.4  Model 4

This method is based on the application of two Diagonal Euler Squares (B1/B2) as shown below:

B1
b-c+d a+c b+d a b a+d b-c a+c+d
a b+d a+c b-c+d a+c+d b-c a+d b
b a+d b-c a+c+d b-c+d a+c b+d a
a+c+d b-c a+d b a b+d a+c b-c+d
a+d b a+c+d b-c a+c b-c+d a b+d
b-c a+c+d b a+d b+d a b-c+d a+c
a+c b-c+d a b+d a+d b a+c+d b-c
b+d a b-c+d a+c b-c a+c+d b a+d

B2
cp+cr+dr cp+cr cq-cr cq-cr+dr cq+dr cq cp cp+dr
cq+dr cq cp cp+dr cp+cr+dr cp+cr cq-cr cq-cr+dr
cp+cr cp+cr+dr cq-cr+dr cq-cr cq cq+dr cp+dr cp
cq cq+dr cp+dr cp cp+cr cp+cr+dr cq-cr+dr cq-cr
cp cp+dr cq+dr cq cq-cr cq-cr+dr cp+cr+dr cp+cr
cq-cr cq-cr+dr cp+cr+dr cp+cr cp cp+dr cq+dr cq
cp+dr cp cq cq+dr cq-cr+dr cq-cr cp+cr cp+cr+dr
cq-cr+dr cq-cr cp+cr cp+cr+dr cp+dr cp cq cq+dr

With proper selected variables, the resulting square M1 = B1 + B2 will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a = 1, b =  4, c = 1, d = 4
      p = 0, q = 24, r = 8

B1
7 2 8 1 4 5 3 6
1 8 2 7 6 3 5 4
4 5 3 6 7 2 8 1
6 3 5 4 1 8 2 7
5 4 6 3 2 7 1 8
3 6 4 5 8 1 7 2
2 7 1 8 5 4 6 3
8 1 7 2 3 6 4 5
B2
40 8 16 48 56 24 0 32
56 24 0 32 40 8 16 48
8 40 48 16 24 56 32 0
24 56 32 0 8 40 48 16
0 32 56 24 16 48 40 8
16 48 40 8 0 32 56 24
32 0 24 56 48 16 8 40
48 16 8 40 32 0 24 56
M1 = B1 + B2
47 10 24 49 60 29 3 38
57 32 2 39 46 11 21 52
12 45 51 22 31 58 40 1
30 59 37 4 9 48 50 23
5 36 62 27 18 55 41 16
19 54 44 13 8 33 63 26
34 7 25 64 53 20 14 43
56 17 15 42 35 6 28 61

While varying the variables {a, b, c, d, p, q, r}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.

15.3.5  Model 5

This method is based on the application of three Auxiliary Squares (B1/B21/B22) as shown below:

B1
a+c b-c+d a b+d a+c+d b-c a+d b
a b+d a+c b-c+d a+d b a+c+d b-c
a+c+d b-c a+d b a+c b-c+d a b+d
a+d b a+c+d b-c a b+d a+c b-c+d
b-c a+c+d b a+d b-c+d a+c b+d a
b a+d b-c a+c+d b+d a b-c+d a+c
b-c+d a+c b+d a b-c a+c+d b a+d
b+d a b-c+d a+c b a+d b-c a+c+d
B21
cq cq cp cp cp+cr cp+cr cq-cr cq-cr
cp+cr cp+cr cq-cr cq-cr cq cq cp cp
cp cp cq cq cq-cr cq-cr cp+cr cp+cr
cq-cr cq-cr cp+cr cp+cr cp cp cq cq
cq-cr cq-cr cp+cr cp+cr cp cp cq cq
cp cp cq cq cq-cr cq-cr cp+cr cp+cr
cp+cr cp+cr cq-cr cq-cr cq cq cp cp
cq cq cp cp cp+cr cp+cr cq-cr cq-cr
B22
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1

With proper selected variables, the resulting square M1 = B1 + (B21 + B22) will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a = 1, b =  4, c = 1, d = 4, x1 = (a-b+c)(p-q+r) = 32
      p = 0, q = 24, r = 8

B1
2 7 1 8 6 3 5 4
1 8 2 7 5 4 6 3
6 3 5 4 2 7 1 8
5 4 6 3 1 8 2 7
3 6 4 5 7 2 8 1
4 5 3 6 8 1 7 2
7 2 8 1 3 6 4 5
8 1 7 2 4 5 3 6
B2 = B21 + B22
56 24 0 32 8 40 48 16
8 40 48 16 56 24 0 32
32 0 24 56 16 48 40 8
16 48 40 8 32 0 24 56
48 16 8 40 0 32 56 24
0 32 56 24 48 16 8 40
40 8 16 48 24 56 32 0
24 56 32 0 40 8 16 48
M1 = B1 + B2
58 31 1 40 14 43 53 20
9 48 50 23 61 28 6 35
38 3 29 60 18 55 41 16
21 52 46 11 33 8 26 63
51 22 12 45 7 34 64 25
4 37 59 30 56 17 15 42
47 10 24 49 27 62 36 5
32 57 39 2 44 13 19 54

While varying the variables {a, b, c, d, p, q, r}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.

15.3.6  Model 6

This method is based on the application of three Auxiliary Squares (B1/B21/B22) as shown below:

B1
a+c a+c+d b b+d b-c b-c+d a a+d
b b+d a+c a+c+d a a+d b-c b-c+d
b-c+d b-c a+d a a+c+d a+c b+d b
a+d a b-c+d b-c b+d b a+c+d a+c
a+c+d a+c b+d b b-c+d b-c a+d a
b+d b a+c+d a+c a+d a b-c+d b-c
b-c b-c+d a a+d a+c a+c+d b b+d
a a+d b-c b-c+d b b+d a+c a+c+d
B21
cq cq-cr cp+cr cp cq-cr cq cp cp+cr
cp cp+cr cq-cr cq cp+cr cp cq cq-cr
cp+cr cp cq cq-cr cp cp+cr cq-cr cq
cq-cr cq cp cp+cr cq cq-cr cp+cr cp
cp+cr cp cq cq-cr cp cp+cr cq-cr cq
cq-cr cq cp cp+cr cq cq-cr cp+cr cp
cq cq-cr cp+cr cp cq-cr cq cp cp+cr
cp cp+cr cq-cr cq cp+cr cp cq cq-cr
B22
x1 0 0 x1 x1 0 0 x1
0 x1 x1 0 0 x1 x1 0
x1 0 0 x1 x1 0 0 x1
0 x1 x1 0 0 x1 x1 0
0 x1 x1 0 0 x1 x1 0
x1 0 0 x1 x1 0 0 x1
0 x1 x1 0 0 x1 x1 0
x1 0 0 x1 x1 0 0 x1

With proper selected variables, the resulting square M1 = B1 + (B21 + B22) will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a = 1, b =  4, c = 1, d = 4, x1 = (a-b+c)(p-q+r) = 32
      p = 0, q = 24, r = 8

B1
2 6 4 8 3 7 1 5
4 8 2 6 1 5 3 7
7 3 5 1 6 2 8 4
5 1 7 3 8 4 6 2
6 2 8 4 7 3 5 1
8 4 6 2 5 1 7 3
3 7 1 5 2 6 4 8
1 5 3 7 4 8 2 6
B2 = B21 + B22
56 16 8 32 48 24 0 40
0 40 48 24 8 32 56 16
40 0 24 48 32 8 16 56
16 56 32 8 24 48 40 0
8 32 56 16 0 40 48 24
48 24 0 40 56 16 8 32
24 48 40 0 16 56 32 8
32 8 16 56 40 0 24 48
M1 = B1 + B2
58 22 12 40 51 31 1 45
4 48 50 30 9 37 59 23
47 3 29 49 38 10 24 60
21 57 39 11 32 52 46 2
14 34 64 20 7 43 53 25
56 28 6 42 61 17 15 35
27 55 41 5 18 62 36 16
33 13 19 63 44 8 26 54

While varying the variables {a, b, c, d, p, q, r}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.

15.3.7  Model 7

This method is based on the application of three Auxiliary Squares (B11/B12/B2) as shown below:

B11
br br ar ar ar+cr ar+cr br-cr br-cr
ar+cr ar+cr br-cr br-cr br br ar ar
ar ar br br br-cr br-cr ar+cr ar+cr
br-cr br-cr ar+cr ar+cr ar ar br br
br-cr br-cr ar+cr ar+cr ar ar br br
ar ar br br br-cr br-cr ar+cr ar+cr
ar+cr ar+cr br-cr br-cr br br ar ar
br br ar ar ar+cr ar+cr br-cr br-cr
B12
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
B2
p+r q-r+s p q+s p+r+s q-r p+s q
p q+s p+r q-r+s p+s q p+r+s q-r
p+r+s q-r p+s q p+r q-r+s p q+s
p+s q p+r+s q-r p q+s p+r q-r+s
q-r p+r+s q p+s q-r+s p+r q+s p
q p+s q-r p+r+s q+s p q-r+s p+r
q-r+s p+r q+s p q-r p+r+s q p+s
q+s p q-r+s p+r q p+s q-r p+r+s

With proper selected variables, the resulting square M1 = (B11 + B12) + B2 will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a = 0, b = 24, c = 8, x1 = (a-b+c)(p-q+r) = 32
      p = 1, q =  4, r = 1, s  = 4

B1 = B11 + B12
56 24 0 32 8 40 48 16
8 40 48 16 56 24 0 32
32 0 24 56 16 48 40 8
16 48 40 8 32 0 24 56
48 16 8 40 0 32 56 24
0 32 56 24 48 16 8 40
40 8 16 48 24 56 32 0
24 56 32 0 40 8 16 48
B2
2 7 1 8 6 3 5 4
1 8 2 7 5 4 6 3
6 3 5 4 2 7 1 8
5 4 6 3 1 8 2 7
3 6 4 5 7 2 8 1
4 5 3 6 8 1 7 2
7 2 8 1 3 6 4 5
8 1 7 2 4 5 3 6
M1 = B1 + B2
58 31 1 40 14 43 53 20
9 48 50 23 61 28 6 35
38 3 29 60 18 55 41 16
21 52 46 11 33 8 26 63
51 22 12 45 7 34 64 25
4 37 59 30 56 17 15 42
47 10 24 49 27 62 36 5
32 57 39 2 44 13 19 54

While varying the variables {a, b, c, p, q, r, s}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.

15.3.8  Model 8

This method is based on the application of three Auxiliary Squares (B11/B12/B2) as shown below:

B11
br br-cr ar+cr ar br-cr br ar ar+cr
ar ar+cr br-cr br ar+cr ar br br-cr
ar+cr ar br br-cr ar ar+cr br-cr br
br-cr br ar ar+cr br br-cr ar+cr ar
ar+cr ar br br-cr ar ar+cr br-cr br
br-cr br ar ar+cr br br-cr ar+cr ar
br br-cr ar+cr ar br-cr br ar ar+cr
ar ar+cr br-cr br ar+cr ar br br-cr
B12
x1 0 0 x1 x1 0 0 x1
0 x1 x1 0 0 x1 x1 0
x1 0 0 x1 x1 0 0 x1
0 x1 x1 0 0 x1 x1 0
0 x1 x1 0 0 x1 x1 0
x1 0 0 x1 x1 0 0 x1
0 x1 x1 0 0 x1 x1 0
x1 0 0 x1 x1 0 0 x1
B2
p+r p+r+s q q+s q-r q-r+s p p+s
q q+s p+r p+r+s p p+s q-r q-r+s
q-r+s q-r p+s p p+r+s p+r q+s q
p+s p q-r+s q-r q+s q p+r+s p+r
p+r+s p+r q+s q q-r+s q-r p+s p
q+s q p+r+s p+r p+s p q-r+s q-r
q-r q-r+s p p+s p+r p+r+s q q+s
p p+s q-r q-r+s q q+s p+r p+r+s

With proper selected variables, the resulting square M1 = (B11 + B12) + B2 will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a = 0, b = 24, c = 8, x1 = (a-b+c)(p-q+r) = 32
      p = 1, q =  4, r = 1, s  = 4

B1 = B11 + B12
56 16 8 32 48 24 0 40
0 40 48 24 8 32 56 16
40 0 24 48 32 8 16 56
16 56 32 8 24 48 40 0
8 32 56 16 0 40 48 24
48 24 0 40 56 16 8 32
24 48 40 0 16 56 32 8
32 8 16 56 40 0 24 48
B2
2 6 4 8 3 7 1 5
4 8 2 6 1 5 3 7
7 3 5 1 6 2 8 4
5 1 7 3 8 4 6 2
6 2 8 4 7 3 5 1
8 4 6 2 5 1 7 3
3 7 1 5 2 6 4 8
1 5 3 7 4 8 2 6
M1 = B1 + B2
58 22 12 40 51 31 1 45
4 48 50 30 9 37 59 23
47 3 29 49 38 10 24 60
21 57 39 11 32 52 46 2
14 34 64 20 7 43 53 25
56 28 6 42 61 17 15 35
27 55 41 5 18 62 36 16
33 13 19 63 44 8 26 54

While varying the variables {a, b, c, p, q, r, s}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.

15.3.9  Model 9

This method is based on the application of three Auxiliary Squares (B1/B21/B22) as shown below:

B1
b-c b b-c+d b+d a+d a+c+d a a+c
b-c+d b+d b-c b a a+c a+d a+c+d
a+c+d a+d a+c a b b-c b+d b-c+d
a+c a a+c+d a+d b+d b-c+d b b-c
b b-c b+d b-c+d a+c+d a+d a+c a
b+d b-c+d b b-c a+c a a+c+d a+d
a+d a+c+d a a+c b-c b b-c+d b+d
a a+c a+d a+c+d b-c+d b+d b-c b
B22
x1 0 0 x1 x1 0 0 x1
0 x1 x1 0 0 x1 x1 0
x1 0 0 x1 x1 0 0 x1
0 x1 x1 0 0 x1 x1 0
0 x1 x1 0 0 x1 x1 0
x1 0 0 x1 x1 0 0 x1
0 x1 x1 0 0 x1 x1 0
x1 0 0 x1 x1 0 0 x1
B21
(a-b+c)q (a-b+c)(q-r) (a-b+c)(p+r) (a-b+c)p (a-b+c)(q-r) (a-b+c)q (a-b+c)p (a-b+c)(p+r)
(a-b+c)p (a-b+c)(p+r) (a-b+c)(q-r) (a-b+c)q (a-b+c)(p+r) (a-b+c)p (a-b+c)q (a-b+c)(q-r)
(a-b+c)(p+r) (a-b+c)p (a-b+c)q (a-b+c)(q-r) (a-b+c)p (a-b+c)(p+r) (a-b+c)(q-r) (a-b+c)q
(a-b+c)(q-r) (a-b+c)q (a-b+c)p (a-b+c)(p+r) (a-b+c)q (a-b+c)(q-r) (a-b+c)(p+r) (a-b+c)p
(a-b+c)(p+r) (a-b+c)p (a-b+c)q (a-b+c)(q-r) (a-b+c)p (a-b+c)(p+r) (a-b+c)(q-r) (a-b+c)q
(a-b+c)(q-r) (a-b+c)q (a-b+c)p (a-b+c)(p+r) (a-b+c)q (a-b+c)(q-r) (a-b+c)(p+r) (a-b+c)p
(a-b+c)q (a-b+c)(q-r) (a-b+c)(p+r) (a-b+c)p (a-b+c)(q-r) (a-b+c)q (a-b+c)p (a-b+c)(p+r)
(a-b+c)p (a-b+c)(p+r) (a-b+c)(q-r) (a-b+c)q (a-b+c)(p+r) (a-b+c)p (a-b+c)q (a-b+c)(q-r)

With proper selected variables, the resulting square M1 = B1 + (B21 + B22) will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a =   1, b =   4, c = 1, d = 4, x1 = d(p-q+r) = -32
      p = -28, q = -16, r = 4

B1
3 4 7 8 5 6 1 2
7 8 3 4 1 2 5 6
6 5 2 1 4 3 8 7
2 1 6 5 8 7 4 3
4 3 8 7 6 5 2 1
8 7 4 3 2 1 6 5
5 6 1 2 3 4 7 8
1 2 5 6 7 8 3 4
B2 = B21 + B22
0 40 48 24 8 32 56 16
56 16 8 32 48 24 0 40
16 56 32 8 24 48 40 0
40 0 24 48 32 8 16 56
48 24 0 40 56 16 8 32
8 32 56 16 0 40 48 24
32 8 16 56 40 0 24 48
24 48 40 0 16 56 32 8
M1 = B1 + B2
3 44 55 32 13 38 57 18
63 24 11 36 49 26 5 46
22 61 34 9 28 51 48 7
42 1 30 53 40 15 20 59
52 27 8 47 62 21 10 33
16 39 60 19 2 41 54 29
37 14 17 58 43 4 31 56
25 50 45 6 23 64 35 12

While varying the variables {a, b, c, d, p, q, r}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.

15.3.10 Model 10

This method is based on the application of three Auxiliary Squares (B1/B21/B22) as shown below:

B1
b-c a+c+d a b+d b a+d a+c b-c+d
a b+d b-c a+c+d a+c b-c+d b a+d
b a+d a+c b-c+d b-c a+c+d a b+d
a+c b-c+d b a+d a b+d b-c a+c+d
a+d b b-c+d a+c a+c+d b-c b+d a
b-c+d a+c a+d b b+d a a+c+d b-c
a+c+d b-c b+d a a+d b b-c+d a+c
b+d a a+c+d b-c b-c+d a+c a+d b
B22
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
x1 0 0 x1 0 x1 x1 0
0 x1 x1 0 x1 0 0 x1
B21
(a-b+c)q (a-b+c)q (a-b+c)p (a-b+c)p (a-b+c)(p+r) (a-b+c)(p+r) (a-b+c)(q-r) (a-b+c)(q-r)
(a-b+c)(p+r) (a-b+c)(p+r) (a-b+c)(q-r) (a-b+c)(q-r) (a-b+c)q (a-b+c)q (a-b+c)p (a-b+c)p
(a-b+c)p (a-b+c)p (a-b+c)q (a-b+c)q (a-b+c)(q-r) (a-b+c)(q-r) (a-b+c)(p+r) (a-b+c)(p+r)
(a-b+c)(q-r) (a-b+c)(q-r) (a-b+c)(p+r) (a-b+c)(p+r) (a-b+c)p (a-b+c)p (a-b+c)q (a-b+c)q
(a-b+c)(q-r) (a-b+c)(q-r) (a-b+c)(p+r) (a-b+c)(p+r) (a-b+c)p (a-b+c)p (a-b+c)q (a-b+c)q
(a-b+c)p (a-b+c)p (a-b+c)q (a-b+c)q (a-b+c)(q-r) (a-b+c)(q-r) (a-b+c)(p+r) (a-b+c)(p+r)
(a-b+c)(p+r) (a-b+c)(p+r) (a-b+c)(q-r) (a-b+c)(q-r) (a-b+c)q (a-b+c)q (a-b+c)p (a-b+c)p
(a-b+c)q (a-b+c)q (a-b+c)p (a-b+c)p (a-b+c)(p+r) (a-b+c)(p+r) (a-b+c)(q-r) (a-b+c)(q-r)

With proper selected variables, the resulting square M1 = B1 + (B21 + B22) will be Pandiagonal and Bimagic, as illustrated in following numerical example:

      a =   1, b =   4, c = 1, d = 4, x1 = d(p-q+r) = -32
      p = -28, q = -16, r = 4

B1
3 6 1 8 4 5 2 7
1 8 3 6 2 7 4 5
4 5 2 7 3 6 1 8
2 7 4 5 1 8 3 6
5 4 7 2 6 3 8 1
7 2 5 4 8 1 6 3
6 3 8 1 5 4 7 2
8 1 6 3 7 2 5 4
B2 = B21 + B22
0 32 56 24 48 16 8 40
48 16 8 40 0 32 56 24
24 56 32 0 40 8 16 48
40 8 16 48 24 56 32 0
8 40 48 16 56 24 0 32
56 24 0 32 8 40 48 16
16 48 40 8 32 0 24 56
32 0 24 56 16 48 40 8
M1 = B1 + B2
3 38 57 32 52 21 10 47
49 24 11 46 2 39 60 29
28 61 34 7 43 14 17 56
42 15 20 53 25 64 35 6
13 44 55 18 62 27 8 33
63 26 5 36 16 41 54 19
22 51 48 9 37 4 31 58
40 1 30 59 23 50 45 12

While varying the variables {a, b, c, d, p, q, r}, 320 (80 unique) Pandiagonal Bimagic Squares can be found.


Vorige Pagina Index About the Author