Vorige Pagina About the Author

' Generates Concentric Lozenge Squares of order 5

' Tested with Office 2007 under Windows 7

Sub MgcSqr5c3()

    Dim a1(25), a(25), b1(25), b(25), c(25)

y = MsgBox("Locked", vbCritical, "Routine MgcSqr5c3")
End

    n2 = 0: n3 = 0: n9 = 0: n10 = 0: k1 = 1: k2 = 1

    Sheets("Klad1").Select
    
    t1 = Timer

    For i1 = 1 To 25
        a1(i1) = i1: b1(i1) = i1
    Next i1
    m1 = 1: m2 = 25: s1 = 65

For j100 = 2 To 5
Cells(k1, 1).Value = j100

'   Read Center Square

    a(7) = Sheets("Center3").Cells(j100, 1):  b(a(7)) = a(7)
    a(8) = Sheets("Center3").Cells(j100, 2):  b(a(8)) = a(8)
    a(9) = Sheets("Center3").Cells(j100, 3):  b(a(9)) = a(9)
    a(12) = Sheets("Center3").Cells(j100, 4): b(a(12)) = a(12)
    a(13) = Sheets("Center3").Cells(j100, 5): b(a(13)) = a(13)
    a(14) = Sheets("Center3").Cells(j100, 6): b(a(14)) = a(14)
    a(17) = Sheets("Center3").Cells(j100, 7): b(a(17)) = a(17)
    a(18) = Sheets("Center3").Cells(j100, 8): b(a(18)) = a(18)
    a(19) = Sheets("Center3").Cells(j100, 9): b(a(19)) = a(19)

'   Generate Squares

For j25 = m1 + 1 To m2 - 1 Step 2                                      'a(25) even
If b(a1(j25)) = 0 Then b(a1(j25)) = a1(j25): c(25) = a1(j25) Else GoTo 250
a(25) = a1(j25)

a(1) = 0.4 * s1 - a(25)
If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10
If b1(a(1)) = 0 Then GoTo 10
If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10

For j24 = m1 + 1 To m2 - 1 Step 2                                      'a(24) even
If b(a1(j24)) = 0 Then b(a1(j24)) = a1(j24): c(24) = a1(j24) Else GoTo 240
a(24) = a1(j24)

a(4) = 0.4 * s1 - a(24)
If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40
If b1(a(4)) = 0 Then GoTo 40
If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40

For j23 = m1 To m2 Step 2                                              'a(23) odd
If b(a1(j23)) = 0 Then b(a1(j23)) = a1(j23): c(23) = a1(j23) Else GoTo 230
a(23) = a1(j23)

a(3) = 0.4 * s1 - a(23)
If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30
If b1(a(3)) = 0 Then GoTo 30
If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30

For j22 = m1 + 1 To m2 - 1 Step 2                                      'a(22) even
If b(a1(j22)) = 0 Then b(a1(j22)) = a1(j22): c(22) = a1(j22) Else GoTo 220
a(22) = a1(j22)

a(21) = s1 - a(22) - a(23) - a(24) - a(25)
If CInt(a(21) / 2) <> a(21) / 2 Then GoTo 210                          'a(21) even
If a(21) < a1(m1) Or a(21) > a1(m2) Then GoTo 210
If b1(a(21)) = 0 Then GoTo 210
If b(a(21)) = 0 Then b(a(21)) = a(21): c(21) = a(21) Else GoTo 210

a(5) = 0.4 * s1 - a(21)
If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50
If b1(a(5)) = 0 Then GoTo 50
If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50

a(2) = 0.4 * s1 - a(22)
If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20
If b1(a(2)) = 0 Then GoTo 20
If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20

For j20 = m1 + 1 To m2 - 1 Step 2                                      'a(20) even
If b(a1(j20)) = 0 Then b(a1(j20)) = a1(j20): c(20) = a1(j20) Else GoTo 200
a(20) = a1(j20)

a(16) = 0.4 * s1 - a(20)
If a(16) < a1(m1) Or a(16) > a1(m2) Then GoTo 160
If b1(a(16)) = 0 Then GoTo 160
If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 160

For j15 = m1 To m2 Step 2                                              'a(15) odd
If b(a1(j15)) = 0 Then b(a1(j15)) = a1(j15): c(15) = a1(j15) Else GoTo 150
a(15) = a1(j15)

a(11) = 0.4 * s1 - a(15)
If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 110:
If b1(a(11)) = 0 Then GoTo 110
If b(a(11)) = 0 Then b(a(11)) = a(11): c(11) = a(11) Else GoTo 110

a(10) = 0.6 * s1 - a(15) - a(20) + a(21) - a(25)
If CInt(a(10) / 2) <> a(10) / 2 Then GoTo 100                          'a(10) even
If a(10) < a1(m1) Or a(10) > a1(m2) Then GoTo 100:
If b1(a(10)) = 0 Then GoTo 100
If b(a(10)) = 0 Then b(a(10)) = a(10): c(10) = a(10) Else GoTo 100

a(6) = 0.4 * s1 - a(10)
If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 60:
If b1(a(6)) = 0 Then GoTo 60
If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60


'                           n9 = n9 + 1: GoSub 640 'Print results (selected numbers)
                            n9 = n9 + 1: GoSub 650 'Print results (squares)

    b(c(6)) = 0: c(6) = 0
60  b(c(10)) = 0: c(10) = 0
100 b(c(11)) = 0: c(11) = 0
110 b(c(15)) = 0: c(15) = 0
150 Next j15

    b(c(16)) = 0: c(16) = 0
160 b(c(20)) = 0: c(20) = 0
200 Next j20
    
    b(c(2)) = 0: c(2) = 0
20  b(c(5)) = 0: c(5) = 0
50  b(c(21)) = 0: c(21) = 0
210 b(c(22)) = 0: c(22) = 0
220 Next j22

    b(c(3)) = 0: c(3) = 0
30  b(c(23)) = 0: c(23) = 0
230 Next j23

    b(c(4)) = 0: c(4) = 0
40  b(c(24)) = 0: c(24) = 0
240 Next j24

    b(c(1)) = 0: c(1) = 0
10  b(c(25)) = 0: c(25) = 0
250 Next j25

    Erase b, c
500 Next j100

   t2 = Timer
    
   t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions for sum" + Str(s1)
   y = MsgBox(t10, 0, "Routine MgcSqr5c3")

End

'   Print results (selected numbers)

640 For i1 = 1 To 25
        Cells(n9, i1).Value = a(i1)
    Next i1
    
    Return

'   Print results (squares)

650 n2 = n2 + 1
    If n2 = 5 Then
        n2 = 1: k1 = k1 + 6: k2 = 1
    Else
        If n9 > 1 Then k2 = k2 + 6
    End If

    Cells(k1, k2 + 1).Select
    Cells(k1, k2 + 1).Font.Color = -4165632
    Cells(k1, k2 + 1).Value = n9
    
    i3 = 0
    For i1 = 1 To 5
        For i2 = 1 To 5
            i3 = i3 + 1
            Cells(k1 + i1, k2 + i2).Value = a(i3)
        Next i2
    Next i1

    Return
   
End Sub

Vorige Pagina About the Author