' Generates Eccentric Magic Squares of order 5 for Prime Numbers
' Tested with Office 2007 under Windows 7
Sub Priem5d()
Dim a1(45), a(25), b1(1013), b(1013), c(25)
y = MsgBox("Locked", vbCritical, "Routine Priem5d")
End
n2 = 0: n3 = 0: n9 = 0: n10 = 0: k1 = 1: k2 = 1
Sheets("Klad1").Select
t1 = Timer
For j100 = 44 To 46
' Define variables
s1 = Sheets("Solutions1432").Cells(j100, 3).Value
nVar1 = Sheets("Solutions1432").Cells(j100, 9).Value
For i1 = 1 To nVar1
a1(i1) = Sheets("Solutions1432").Cells(j100, 9 + i1).Value
Next i1
m1 = 1: m2 = nVar1
' determine m18 and m19
x24 = Sheets("Solutions1432").Cells(j100, 7).Value
x25 = Sheets("Solutions1432").Cells(j100, 8).Value
m24 = 0: m25 = 0
For i1 = 1 To m2
If a1(i1) = x24 Then m24 = i1
If a1(i1) = x25 Then m25 = i1
Next i1
If m24 = 0 Or m25 = 0 Then End 'Input Error
Erase b1
For i1 = m1 To m2
b1(a1(i1)) = a1(i1)
Next i1
' Generate Squares
a(19) = 0.2 * s1: b(a(19)) = a(19)
For j25 = m1 To m2 ''m25 'a(25)
If b(a1(j25)) = 0 Then b(a1(j25)) = a1(j25): c(25) = a1(j25) Else GoTo 250
a(25) = a1(j25)
a(13) = 0.4 * s1 - a(25)
If a(13) < a1(m13) Or a(13) > a1(m2) Then GoTo 130
If b1(a(13)) = 0 Then GoTo 130
If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 130
For j24 = m1 To m2 ''m24 'a(24)
If b(a1(j24)) = 0 Then b(a1(j24)) = a1(j24): c(24) = a1(j24) Else GoTo 240
a(24) = a1(j24)
a(23) = 0.6 * s1 - a(24) - a(25)
If a(23) < a1(m23) Or a(23) > a1(m2) Then GoTo 230
If b1(a(23)) = 0 Then GoTo 230
If b(a(23)) = 0 Then b(a(23)) = a(23): c(23) = a(23) Else GoTo 230
a(20) = 0.8 * s1 - a(24) - 2 * a(25)
If a(20) < a1(m20) Or a(20) > a1(m2) Then GoTo 200
If b1(a(20)) = 0 Then GoTo 200
If b(a(20)) = 0 Then b(a(20)) = a(20): c(20) = a(20) Else GoTo 200
a(18) = 0.4 * s1 - a(20)
If a(18) < a1(m18) Or a(18) > a1(m2) Then GoTo 180
If b1(a(18)) = 0 Then GoTo 180
If b(a(18)) = 0 Then b(a(18)) = a(18): c(18) = a(18) Else GoTo 180
a(15) = 0.4 * s1 - a(23)
If a(15) < a1(m15) Or a(15) > a1(m2) Then GoTo 150
If b1(a(15)) = 0 Then GoTo 150
If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 150
a(14) = 0.4 * s1 - a(24)
If a(14) < a1(m14) Or a(14) > a1(m2) Then GoTo 140
If b1(a(14)) = 0 Then GoTo 140
If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 140
For j22 = m1 To m2 'a(22)
If b(a1(j22)) = 0 Then b(a1(j22)) = a1(j22): c(22) = a1(j22) Else GoTo 220
a(22) = a1(j22)
a(21) = 0.4 * s1 - a(22)
If a(21) < a1(m1) Or a(21) > a1(m2) Then GoTo 210
If b1(a(21)) = 0 Then GoTo 210
If b(a(21)) = 0 Then b(a(21)) = a(21): c(21) = a(21) Else GoTo 210
For j17 = m1 To m2 'a(17)
If b(a1(j17)) = 0 Then b(a1(j17)) = a1(j17): c(17) = a1(j17) Else GoTo 170
a(17) = a1(j17)
a(16) = 0.4 * s1 - a(17)
If a(16) < a1(m1) Or a(16) > a1(m2) Then GoTo 160
If b1(a(16)) = 0 Then GoTo 160
If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 160
For j12 = m1 To m2 'a(12)
If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 120
a(12) = a1(j12)
a(11) = 0.4 * s1 - a(12)
If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 110
If b1(a(11)) = 0 Then GoTo 110
If b(a(11)) = 0 Then b(a(11)) = a(11): c(11) = a(11) Else GoTo 110
For j10 = m1 To m2 'a(10)
If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 100
a(10) = a1(j10)
a(9) = 0.6 * s1 + a(10) - a(13) - a(17) - a(21)
If a(9) < a1(m1) Or a(9) > a1(m2) Then GoTo 90
If b1(a(9)) = 0 Then GoTo 90
If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 90
a(5) = 0.4 * s1 - a(10)
If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50
If b1(a(5)) = 0 Then GoTo 50
If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
a(4) = 0.4 * s1 - a(9)
If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40
If b1(a(4)) = 0 Then GoTo 40
If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
For j8 = m1 To m2 'a(8)
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 80
a(8) = a1(j8)
a(7) = 0.4 * s1 - (a(8) + a(9) + a(10) + a(12) - a(16) - a(21)) / 2
If a(7) < a1(m1) Or a(7) > a1(m2) Or Int(a(7)) <> a(7) Then GoTo 70:
If b1(a(7)) = 0 Then GoTo 70
If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
a(6) = s1 - a(7) - a(8) - a(9) - a(10)
If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 60:
If b1(a(6)) = 0 Then GoTo 60
If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60
a(3) = 0.4 * s1 - a(8)
If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30:
If b1(a(3)) = 0 Then GoTo 30
If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
a(2) = 0.4 * s1 - a(6)
If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20:
If b1(a(2)) = 0 Then GoTo 20
If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
a(1) = 0.4 * s1 - a(7)
If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10:
If b1(a(1)) = 0 Then GoTo 10
If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
' n9 = n9 + 1: GoSub 640 'Print results (selected numbers)
n9 = n9 + 1: GoSub 650 'Print results (squares)
Erase b, c: GoTo 500 'Print only first square
b(c(1)) = 0: c(1) = 0
10 b(c(2)) = 0: c(2) = 0
20 b(c(3)) = 0: c(3) = 0
30 b(c(6)) = 0: c(6) = 0
60 b(c(7)) = 0: c(7) = 0
70 b(c(8)) = 0: c(8) = 0
80 Next j8
b(c(4)) = 0: c(4) = 0
40 b(c(5)) = 0: c(5) = 0
50 b(c(9)) = 0: c(9) = 0
90 b(c(10)) = 0: c(10) = 0
100 Next j10
b(c(11)) = 0: c(11) = 0
110 b(c(12)) = 0: c(12) = 0
120 Next j12
b(c(16)) = 0: c(16) = 0
160 b(c(17)) = 0: c(17) = 0
170 Next j17
b(c(21)) = 0: c(21) = 0
210 b(c(22)) = 0: c(22) = 0
220 Next j22
b(c(14)) = 0: c(14) = 0
140 b(c(15)) = 0: c(15) = 0
150 b(c(18)) = 0: c(18) = 0
180 b(c(20)) = 0: c(20) = 0
200 b(c(23)) = 0: c(23) = 0
230 b(c(24)) = 0: c(24) = 0
240 Next j24
b(c(13)) = 0: c(13) = 0
130 b(c(25)) = 0: c(25) = 0
250 Next j25
n10 = 0: b(a(19)) = 0
500 Next j100
t2 = Timer
t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions for sum" + Str(s1)
y = MsgBox(t10, 0, "Routine Priem5d")
End
' Print results (selected numbers)
640 For i1 = 1 To 25
Cells(n9, i1).Value = a(i1)
Next i1
Return
' Print results (squares)
650 n2 = n2 + 1
If n2 = 5 Then
n2 = 1: k1 = k1 + 6: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 6
End If
Cells(k1, k2 + 1).Select
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = "MC = " + CStr(s1) 'n9
i3 = 0
For i1 = 1 To 5
For i2 = 1 To 5
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a(i3)
Next i2
Next i1
Return
End Sub