Office Applications and Entertainment, Magic Cubes | ||
Exhibit IV | About the Author |
IV Associated Magic Rectangles
Based on the linear equations describing an Associated Magic Rectangle of order 3 x 5: a(11) = 5 * c1 - a(12) - a(13) - a(14) - a(15) a(10) = c1 + a(11) - a(15) a( 9) = c1 + a(12) - a(14) a( 8) = c1 a( 7) = 2 * c1 - a( 9) a( 6) = 2 * c1 - a(10) a( 5) = 2 * c1 - a(11) a( 4) = 2 * c1 - a(12) a( 3) = 2 * c1 - a(13) a( 2) = 2 * c1 - a(14) a( 1) = 2 * c1 - a(15)
a routine can be written to generate Associated Magic Rectangles of order 3 x 5 (ref. MgcSqr35).
Based on the linear equations describing an Associated Magic Rectangle of order 3 x 7: a(15) = 7 * c1 - a(16) - a(17) - a(18) - a(19) - a(20) - a(21) a(14) = c1 + a(15) - a(21) a(13) = c1 + a(16) - a(20) a(12) = c1 + a(17) - a(19) a(11) = c1 a(10) = 2 * c1 - a(12) a( 9) = 2 * c1 - a(13) a( 8) = 2 * c1 - a(14) a( 7) = 2 * c1 - a(15) a( 6) = 2 * c1 - a(16) a( 5) = 2 * c1 - a(17) a( 4) = 2 * c1 - a(18) a( 3) = 2 * c1 - a(19) a( 2) = 2 * c1 - a(20) a( 1) = 2 * c1 - a(21)
a routine can be written to generate Associated Magic Rectangles of order 3 x 7 (ref. MgcSqr37).
Based on the linear equations describing an Associated Magic Rectangle of order 5 x 7: a(22) = 7 * c1 - a(23) - a(24) - a(25) - a(26) - a(27) - a(28) a(21) = c1 + a(22) - a(28) + a(29) - a(35) a(20) = c1 + a(23) - a(27) + a(30) - a(34) a(19) = c1 + a(24) - a(26) + a(31) - a(33) a(18) = c1 a(17) = 2 * c1 - a(19) a(16) = 2 * c1 - a(20) a(15) = 2 * c1 - a(21) a(14) = 2 * c1 - a(22) a(13) = 2 * c1 - a(23) a(12) = 2 * c1 - a(24) a(11) = 2 * c1 - a(25) a(10) = 2 * c1 - a(26) a( 9) = 2 * c1 - a(27) a( 8) = 2 * c1 - a(28) a( 7) = 2 * c1 - a(29) a( 6) = 2 * c1 - a(30) a( 5) = 2 * c1 - a(31) a( 4) = 2 * c1 - a(32) a( 3) = 2 * c1 - a(33) a( 2) = 2 * c1 - a(34) a( 1) = 2 * c1 - a(35)
a routine can be written to generate Associated Magic Rectangles of order 5 x 7 (ref. MgcSqr57).
Based on the linear equations describing an Associated Magic Rectangle of order 3 x 5 x 7: a(99) = 7 * c1 - a(100) - a(101) - a(102) - a(103) - a(104) - a(105) a(92) = 7 * c1 - a(93) - a(94) - a(95) - a( 96) - a(97) - a(98) a(85) = 7 * c1 - a(86) - a(87) - a(88) - a( 89) - a(90) - a(91) a(78) = 7 * c1 - a(79) - a(80) - a(81) - a( 82) - a(83) - a(84) a(77) = 5 * c1 - a(84) - a(91) - a(98) - a(105) a(76) = 5 * c1 - a(83) - a(90) - a(97) - a(104) a(75) = 5 * c1 - a(82) - a(89) - a(96) - a(103) a(74) = 5 * c1 - a(81) - a(88) - a(95) - a(102) a(73) = 5 * c1 - a(80) - a(87) - a(94) - a(101) a(72) = 5 * c1 - a(79) - a(86) - a(93) - a(100) a(71) = 5 * c1 - a(78) - a(85) - a(92) - a( 99) a(70) = 6 * c1 - a(78) - a(85) - a(92) - a( 99) - a(105) a(69) = 6 * c1 - a(79) - a(86) - a(93) - a(100) - a(104) a(68) = 6 * c1 - a(80) - a(87) - a(94) - a(101) - a(103) a(67) = 6 * c1 - a(81) - a(88) - a(95) - 2 * a(102) a(66) = 6 * c1 - a(82) - a(89) - a(96) - a(101) - a(103) a(65) = 6 * c1 - a(83) - a(90) - a(97) - a(100) - a(104) a(64) = 6 * c1 - a(84) - a(91) - a(98) - a( 99) - a(105) a(63) = c1 + a(78) - a(98) a(62) = c1 + a(79) - a(97) a(61) = c1 + a(80) - a(96) a(60) = c1 + a(81) - a(95) a(59) = c1 + a(82) - a(94) a(58) = c1 + a(83) - a(93) a(57) = c1 + a(84) - a(92) a(56) = c1 + a(85) - a(91) a(55) = c1 + a(86) - a(90) a(54) = c1 + a(87) - a(89) a(53) = c1
a routine can be written to generate Associated Magic Rectangles of order 3 x 5 x 7.
|
Index | About the Author |