Office Applications and Entertainment, Magic Cubes | ||
Exhibit VIIIa | About the Author |
8a Perfect Concentric Magic Cubes (6 x 6 x 6)
8a-1 Lemma
Order 4 Almost Perfect Magic Cubes are not suitable for the construction of order 6 Perfect Concentric Magic Cubes.
8a-2 Proof
The application of order 4 Almost Perfect Magic Cubes as center cubes for order 6 Perfect Concentric Magic Cubes
would require a border with corner pairs which are non symmetrical over the space diagonals, say:
|
a( 5) = a(212) + a(213) + a(214) - a(6) - a(1) a( 25) = a(192) + a(198) + a(204) - a(31) - a(1) a( 30) = a(187) + a(193) + a(199) - a(36) - a(6) a( 35) = s6 - a(185) - a(36) - a(31) - a(181) - a(186) a( 67) = s6 - a(103) - a(139) - a(175) - a(31) - a(211) a( 72) = s6 - a(108) - a(144) - a(180) - a(36) - a(216) a(145) = s6 - a(180) - a(36) - a(1) - a(181) - a(216) a(150) = s6 - a(175) - a(31) - a(6) - a(186) - a(211) a(182) = s6 - a(183) - a(184) - a(185) - a(181) - a(186) a(187) = s6 - a(193) - a(199) - a(205) - a(181) - a(211) a(192) = s6 - a(198) - a(204) - a(210) - a(186) - a(216) a(212) = s6 - a(213) - a(214) - a(215) - a(211) - a(216) a(36) = s6 - a(181) - d(4) a(31) = - s6/3 - a(186) + d(4) a(6) = s6 - a(211) - d(4) a(1) = - s6/3 - a(216) + d(4) d(1) = 4*s6/3 - d(4) d(2) = d(4) d(3) = 4*s6/3 - d(4) d(4) = 2*s6/3 |
a(2) = s6/3 - a(212) |
a(12) = s6/3 - a(187) |
a(32) = s6/3 - a(182) |
a( 42) = s6/3 - a(67) |
which proofs that the space diagonals d(1), d(2), d(3) and d(4) of the order 4 center cube should be identical.
|
Index | About the Author |