Office Applications and Entertainment, Magic Cubes | ||
Exhibit VIIIb | About the Author |
8b Perfect Concentric Magic Cubes (6 x 6 x 6)
8b-1 Introduction
This Exhibit VIIIb describes the construction of order 6 Perfect Concentric Magic Cubes based on the application of:
The relation between the top and bottom plane can be represented as follows:
|
|
|
|
|
|
8b-2 Horizontal Magic Border Planes
With c(i) the cube variables and the substitution a(i) = c(i) for i = 1 ... 36, |
Plane 1 (Top)
|
a(5) = s6 / 3 - a(35) a(4) = s6 / 3 - a(34) a(3) = s6 / 3 - a(33) a(2) = s6 / 3 - a(32) |
a(25) = s6 / 3 - a(30) a(19) = s6 / 3 - a(24) a(13) = s6 / 3 - a(18) a(7) = s6 / 3 - a(12) |
a(6) = s4 - a(31) - a(1) - a(36) a(32) = s6 - a(33) - a(34) - a(35) - a(31) - a(36) a(12) = s6 - a(18) - a(24) - a(30) - a(6) - a(36) a(8) = s6 - a(15) - a(22) - a(29) - a(1) - a(36) a(16) = s4 - a(21) - a(15) - a(22) a(11) = s6 - a(16) - a(21) - a(26) - a(6) - a(31) a(27) = s4 - a(28) - a(26) - a(29) a(10) = s6 - a(28) - a(16) - a(22) - a(4) - a(34) a(9) = s4 - a(10) - a(11) - a(8) a(20) = s4 - a(23) - a(21) - a(22) a(17) = s4 - a(23) - a(11) - a(29) a(14) = s4 - a(20) - a(26) - a(8)
with the independent variables (16 ea) highlighted in red.
8b-3 Vertical Magic Border Planes (L/R)
With c(i) the cube variables and the substitution:
|
|
= |
|
a(8) = s6 - a(15) - a(22) - a(29) - a(1) - a(36) a(11) = s6 - a(17) - a(23) - a(29) - a(5) - a(35) a(16) = s6 - a(21) - a(26) - a(11) - a(6) - a(31) a(14) = s6 - a(20) - a(26) - a(8) - a(2) - a(32) a(10) = s6 - a(28) - a(16) - a(22) - a(4) - a(34) a(9) = s6 - a(27) - a(21) - a(15) - a(3) - a(33) a(25) = s6 - a(30) - a(27) - a(28) - a(26) - a(29) a(19) = s6 - a(24) - a(20) - a(21) - a(23) - a(22) a(13) = s6 - a(18) - a(14) - a(16) - a(17) - a(15) a(12) = s6 - a(30) - a(18) - a(24) - a(6) - a(36) a(7) = s6 - a(12) - a(9) - a(10) - a(11) - a(8)
with a(i) independent for i = 26 ... 30, 20 ... 24 and i = 15, 17, 18
8b-4 Vertical Magic Border Planes (B/F)
Based on a comparable substitution:
|
|
= |
|
a(8) = s6 - a(1) - a(15) - a(22) - a(29) - a(36) a(16) = s6 - a(21) - a(15) - a(22) + - (a(1) + a(3) + a(4) + a(6) - a(7) - a(12) - a(25) - a(30) + a(31) + a(33) + a(34) + a(36))/2 a(11) = s6 - a(6) - a(16) - a(21) - a(26) - a(31) a(27) = s6 - a(25) - a(26) - a(28) - a(29) - a(30) a(10) = s6 - a(16) - a(22) - a(28) - a(4) - a(34) a(9) = s6 - a(15) - a(21) - a(27) - a(3) - a(33) a(20) = s6 - a(21) - a(22) - a(23) - a(19) - a(24) a(17) = s6 - a(11) - a(23) - a(29) - a(5) - a(35) a(14) = s6 - a(15) - a(16) - a(17) - a(13) - a(18)
with a(i) independent for i = 26, 28, 29, 21 ... 23 and i = 15
8b-5 Conclusion
The linear equations deducted in previous sections can be incorporated in a guessing routine for the Magic Sum s1 = 651,
and the integers 1 ... 76 and 141 ... 216.
|
Index | About the Author |