Office Applications and Entertainment, Magic Cubes | ||
Index | About the Author |
Plane 11 (Top)
|
|||||||||||||||||||||||||||
Plane 12
|
|||||||||||||||||||||||||||
Plane 13
|
|||||||||||||||||||||||||||
Plane 14
|
|||||||||||||||||||||||||||
Plane 15
|
In general Magic Cubes of order 5 can be represented as follows:
|
Plane 11 (Top)
|
|||||||||||||||||||||||||||
Plane 12
|
|||||||||||||||||||||||||||
Plane 13
|
|||||||||||||||||||||||||||
Plane 14
|
|||||||||||||||||||||||||||
Plane 15
|
a(121)=315-a(122)-a(123)-a(124)-a(125) a(116)=315-a(117)-a(118)-a(119)-a(120) a(115)=315-a(117)-a(118)-a(120)-a(125) a(114)=+a(118)+a(120)-a(124) a(113)=+a(117)+a(119)-a(123) a(112)=315-a(117)-a(119)-a(120)-a(122) a(111)=-315+a(117)+a(120)+a(122)+a(123)+a(124)+a(125) a(110)=-315+a(117)+a(118)+a(120)+a(122)+a(123)+a(125) a(109)=315-a(118)-a(120)-a(123)-a(125) a(108)=315-a(117)-a(119)-a(122)-a(124) a(107)=-315+a(117)+a(119)+a(120)+a(122)+a(124)+a(125) a(106)=315-a(117)-a(120)-a(122)-a(125) a(105)=315-a(120)-a(122)-a(123)-a(125) a(104)=-a(119)+a(123)+a(125) a(103)=-a(118)+a(122)+a(124) a(102)=315-a(117)-a(122)-a(124)-a(125) a(101)=-315+a(117)+a(118)+a(119)+a(120)+a(122)+a(125) a(97)=(-a(98)+a(99)-2*a(100)+3*a(117)+a(118)-a(119)+2*a(120))/3 a(96)=(945-2*a(98)-4*a(99)-a(100)-3*a(117)-a(118)+a(119)-2*a(120))/3 a(94)=(-1323+a(95)+a(99)+2*a(100)+3*a(117)+a(118)+4*a(120)+4*a(122)+a(123)+3*a(124)+3*a(125))/2 a(93)=(-189-2*a(98)+2*a(99)-a(100)+3*a(117)-a(118)+a(119)+a(120)+3*a(122)-3*a(123)+3*a(124))/3 a(92)=(5103-3*a(95)-2*a(98)-7*a(99)-4*a(100)-15*a(117)-7*a(118)-2*a(119)-14*a(120)-6*a(122)-3*a(123)-3*a(124)-9*a(125))/6 a(91)=189-a(95)+a(98)+a(118)-2*a(122)+a(123)-2*a(124) a(90)=(-945-a(95)+2*a(98)+a(99)+3*a(117)+3*a(118)+4*a(120)+3*a(123)-a(124)+3*a(125))/2 a(89)=(-189+3*a(95)-2*a(98)-a(99)-a(100)+3*a(117)-a(118)+a(119)+a(120)+3*a(122)-3*a(123)+3*a(124))/3 a(88)=(567-4*a(98)-2*a(99)+a(100)-3*a(117)-2*a(118)-a(119)-a(120)+3*a(122)+3*a(124))/3 a(87)=(378-3*a(95)+2*a(98)+a(99)+a(100)+a(118)+2*a(119)-a(120)-3*a(122)-3*a(124))/3 a(86)=(3213+3*a(95)+2*a(98)+a(99)-2*a(100)-9*a(117)-5*a(118)-4*a(119)-10*a(120)-6*a(122)-3*a(123)-3*a(124)-9*a(125))/6 a(85)=(2835+3*a(95)-2*a(98)-a(99)-4*a(100)-3*a(117)-7*a(118)-2*a(119)-8*a(120)-9*a(123)+3*a(124)-9*a(125))/6 a(84)=(1134-3*a(95)-a(98)-2*a(99)-2*a(100)-3*a(117)+a(118)-a(119)-a(120)-3*a(122)+3*a(123)-3*a(124))/3 a(83)=(378+2*a(98)-2*a(99)+a(100)+a(118)+2*a(119)-a(120)-3*a(122)-3*a(124))/3 a(82)=(-378+3*a(95)-2*a(98)+2*a(99)+2*a(100)-a(118)-2*a(119)+a(120)+3*a(122)+3*a(124))/3 a(81)=(-3213-3*a(95)+4*a(98)+5*a(99)+2*a(100)+9*a(117)+5*a(118)+4*a(119)+10*a(120)+6*a(122)+3*a(123)+3*a(124)+9*a(125))/6 a(80)=(945-3*a(95)-2*a(98)-a(99)-a(100)-3*a(117)-a(118)+a(119)-2*a(120))/3 a(79)=(1323-a(95)+2*a(98)-a(99)-3*a(117)-a(118)-4*a(120)-4*a(122)-a(123)-3*a(124)-3*a(125))/2 a(78)=(189+a(98)+2*a(99)-a(100)+2*a(118)-2*a(119)+a(120)-3*a(122)+3*a(123)-3*a(124))/3 a(77)=(-3213+3*a(95)+4*a(98)-a(99)+2*a(100)+9*a(117)+5*a(118)+4*a(119)+10*a(120)+6*a(122)+3*a(123)+3*a(124)+9*a(125))/6 a(76)=(-567+3*a(95)-4*a(98)+a(99)+a(100)+3*a(117)-2*a(118)-a(119)+2*a(120)+6*a(122)-3*a(123)+6*a(124))/3 a(75)=(945-2*a(98)-a(99)-a(100)-3*a(117)-a(118)+a(119)-2*a(120)-3*a(125))/3 a(74)=+a(98)+a(100)-a(124) a(73)=(-a(98)+4*a(99)-2*a(100)+3*a(117)+a(118)-a(119)+2*a(120)-3*a(123))/3 a(72)=(945+a(98)-4*a(99)-a(100)-3*a(117)-a(118)+a(119)-2*a(120)-3*a(122))/3 a(71)=(-945-a(98)+a(99)+a(100)+3*a(117)+a(118)-a(119)+2*a(120)+3*a(122)+3*a(123)+3*a(124)+3*a(125))/3 a(70)=(-945-a(95)+2*a(98)+a(99)+2*a(100)+3*a(117)+3*a(118)+2*a(120)+3*a(123)-a(124)+3*a(125))/2 a(69)=(-189+3*a(95)-2*a(98)+2*a(99)-a(100)+3*a(117)-a(118)-2*a(119)+a(120)+3*a(122)-3*a(123)+3*a(124))/3 a(68)=(567-a(98)-2*a(99)+a(100)-3*a(117)-5*a(118)-a(119)-a(120)+3*a(122)+3*a(124))/3 a(67)=(378-3*a(95)+a(98)+2*a(99)-a(100)+2*a(118)+a(119)+a(120)-3*a(122)-3*a(124))/3 a(66)=(3213+3*a(95)-2*a(98)-7*a(99)-4*a(100)-9*a(117)-a(118)+4*a(119)-8*a(120)-6*a(122)-3*a(123)-3*a(124)-9*a(125))/6 a(65)=(945+9*a(95)-2*a(98)-a(99)-4*a(100)+3*a(117)-a(118)-2*a(119)-2*a(120)-9*a(123)+3*a(124)-3*a(125))/6 a(64)=(-1701-3*a(95)-2*a(98)-a(99)+2*a(100)+3*a(117)-a(118)-2*a(119)+4*a(120)+6*a(122)+9*a(123)+9*a(124)+9*a(125))/6 a(63)=63 a(62)=(819+a(95)-2*a(98)-a(99)-3*a(117)-3*a(118)-2*a(120)+2*a(122)-a(123)+a(124)-3*a(125))/2 a(61)=(-189-9*a(95)+10*a(98)+5*a(99)+2*a(100)+3*a(117)+11*a(118)+4*a(119)+4*a(120)-12*a(122)+3*a(123)-15*a(124)+3*a(125))/6 a(60)=(945-9*a(95)+2*a(98)+a(99)-2*a(100)-3*a(117)+a(118)+2*a(119)+2*a(120)-6*a(122)+3*a(123)-3*a(124)+3*a(125))/6 a(59)=(1701+3*a(95)+2*a(98)-5*a(99)-2*a(100)-3*a(117)+a(118)+2*a(119)-4*a(120)-6*a(122)-3*a(123)-3*a(124)-3*a(125))/6 a(58)=-63-a(98)+a(122)+a(123)+a(124) a(57)=(-567-3*a(95)+8*a(98)+a(99)+4*a(100)+3*a(117)+7*a(118)+2*a(119)+2*a(120)-6*a(122)+3*a(123)-9*a(124)+3*a(125))/6 a(56)=(63+3*a(95)-2*a(98)+a(99)+a(117)-3*a(118)-2*a(119)+4*a(122)-3*a(123)+3*a(124)-a(125))/2 a(55)=(945+3*a(95)-2*a(98)-a(99)+2*a(100)-3*a(117)-7*a(118)-2*a(119)-2*a(120)+6*a(122)-3*a(123)+3*a(124)-3*a(125))/6 a(54)=(1134-3*a(95)-a(98)+a(99)-2*a(100)-3*a(117)+a(118)+2*a(119)-a(120)-3*a(122)-3*a(124)-3*a(125))/3 a(53)=(378+5*a(98)-2*a(99)+a(100)+4*a(118)+2*a(119)-a(120)-6*a(122)-6*a(124))/3 a(52)=-441+a(95)-a(98)+a(99)+2*a(117)-a(119)+a(120)+2*a(122)+2*a(124)+a(125) a(51)=(189-a(95)-a(99)-a(117)-a(118)+a(123)+a(124)+a(125))/2 a(50)=(-945+2*a(98)+a(99)+a(100)+3*a(117)+a(118)-a(119)+2*a(120)+3*a(122)+3*a(123)+3*a(125))/3 a(49)=315-a(98)-a(100)-a(123)-a(125) a(48)=(945+a(98)-4*a(99)+2*a(100)-3*a(117)-a(118)+a(119)-2*a(120)-3*a(122)-3*a(124))/3 a(47)=(-945-a(98)+4*a(99)+a(100)+3*a(117)+a(118)-a(119)+2*a(120)+3*a(122)+3*a(124)+3*a(125))/3 a(46)=(945+a(98)-a(99)-a(100)-3*a(117)-a(118)+a(119)-2*a(120)-3*a(122)-3*a(125))/3 a(45)=(945+a(95)-2*a(98)-a(99)-2*a(100)-a(117)-a(118)-2*a(120)-3*a(123)+a(124)-3*a(125))/2 a(44)=(1134-3*a(95)+2*a(98)-2*a(99)+a(100)-3*a(117)-2*a(118)-a(119)-4*a(120)-3*a(122)+3*a(123)-3*a(124))/3 a(43)=(378+a(98)+2*a(99)-a(100)+2*a(118)-2*a(119)+a(120)-3*a(122)-3*a(124))/3 a(42)=(-378+3*a(95)-a(98)-2*a(99)+a(100)-2*a(118)+2*a(119)+2*a(120)+3*a(122)+3*a(124))/3 a(41)=(-3213-3*a(95)+2*a(98)+7*a(99)+4*a(100)+9*a(117)+7*a(118)+2*a(119)+8*a(120)+6*a(122)+3*a(123)+3*a(124)+9*a(125))/6 a(40)=(945-9*a(95)+2*a(98)+a(99)+4*a(100)-3*a(117)+a(118)+2*a(119)-4*a(120)-6*a(122)+3*a(123)-3*a(124)+3*a(125))/6 a(39)=(1701+3*a(95)+2*a(98)+a(99)-2*a(100)-3*a(117)+a(118)-4*a(119)-4*a(120)-6*a(122)-3*a(123)-3*a(124)-3*a(125))/6 a(38)=-63-a(118)+a(122)+a(123)+a(124) a(37)=(-189-a(95)+2*a(98)+a(99)+a(117)+3*a(118)+2*a(120)-2*a(122)+a(123)-3*a(124)+a(125))/2 a(36)=(189+9*a(95)-10*a(98)-5*a(99)-2*a(100)+3*a(117)-5*a(118)+2*a(119)+2*a(120)+12*a(122)-9*a(123)+9*a(124)-3*a(125))/6 a(35)=(-945+9*a(95)-2*a(98)-a(99)+2*a(100)+3*a(117)-a(118)-2*a(119)+4*a(120)+6*a(122)-3*a(123)+3*a(124)+3*a(125))/6 a(34)=(-1701-3*a(95)-2*a(98)+5*a(99)+2*a(100)+3*a(117)-a(118)+4*a(119)+4*a(120)+6*a(122)+3*a(123)+9*a(124)+3*a(125))/6 a(33)=63+a(98)+a(118)-a(122)-a(124) a(32)=(567+3*a(95)-8*a(98)-a(99)-4*a(100)+3*a(117)-7*a(118)-2*a(119)-2*a(120)+12*a(122)-3*a(123)+9*a(124)-3*a(125))/6 a(31)=(1197-3*a(95)+2*a(98)-a(99)-3*a(117)+a(118)-2*a(120)-6*a(122)+a(123)-5*a(124)-a(125))/2 a(30)=(945-3*a(95)+2*a(98)+a(99)-2*a(100)-3*a(117)+a(118)+2*a(119)+2*a(120)-6*a(122)+3*a(123)-3*a(124)-3*a(125))/6 a(29)=(-1134+3*a(95)+a(98)-a(99)+2*a(100)+3*a(117)+2*a(118)+a(119)+4*a(120)+3*a(122)+3*a(125))/3 a(28)=(-378-5*a(98)+2*a(99)-a(100)+3*a(117)-a(118)+a(119)+a(120)+6*a(122)-3*a(123)+6*a(124))/3 a(27)=756-a(95)+a(98)-a(99)-2*a(117)-2*a(120)-3*a(122)-2*a(124)-a(125) a(26)=(-189+a(95)+a(99)+a(117)-a(118)-2*a(119)+2*a(122)+a(123)+a(124)+a(125))/2 a(25)=315-a(100)-a(122)-a(123)-a(125) a(24)=-a(99)+a(123)+a(125) a(23)=-a(98)+a(122)+a(124) a(22)=(945+a(98)-a(99)+2*a(100)-3*a(117)-a(118)+a(119)-2*a(120)-3*a(122)-3*a(124)-3*a(125))/3 a(21)=(-945+2*a(98)+4*a(99)+a(100)+3*a(117)+a(118)-a(119)+2*a(120)+3*a(122)+3*a(125))/3 a(20)=315-a(95)-a(117)-a(118)-a(120) a(19)=(1323-a(95)-a(99)-2*a(100)-3*a(117)+a(118)-2*a(120)-4*a(122)-a(123)-3*a(124)-3*a(125))/2 a(18)=(189+2*a(98)-2*a(99)+a(100)+a(118)+2*a(119)-a(120)-3*a(122)+3*a(123)-3*a(124))/3 a(17)=(-3213+3*a(95)+2*a(98)+7*a(99)+4*a(100)+9*a(117)+7*a(118)-4*a(119)+8*a(120)+6*a(122)+3*a(123)+3*a(124)+9*a(125))/6 a(16)=-189+a(95)-a(98)+a(117)-a(118)+a(120)+2*a(122)-a(123)+2*a(124) a(15)=(315+a(95)-2*a(98)-a(99)-a(117)-a(118)+2*a(122)-a(123)+a(124)-a(125))/2 a(14)=(1134-3*a(95)+2*a(98)+a(99)+a(100)-3*a(117)-2*a(118)+2*a(119)-4*a(120)-3*a(122)-3*a(124)-3*a(125))/3 a(13)=(378+4*a(98)+2*a(99)-a(100)+5*a(118)-2*a(119)+a(120)-6*a(122)-6*a(124))/3 a(12)=(-1323+3*a(95)-2*a(98)-a(99)-a(100)+6*a(117)-a(118)+a(119)+4*a(120)+6*a(122)+6*a(124)+3*a(125))/3 a(11)=(567-3*a(95)-2*a(98)-a(99)+2*a(100)-3*a(117)-a(118)-2*a(119)-2*a(120)+3*a(123)+3*a(124)+3*a(125))/6 a(10)=(945-3*a(95)+2*a(98)+a(99)+4*a(100)-3*a(117)+a(118)+2*a(119)-4*a(120)-6*a(122)+3*a(123)-3*a(124)-3*a(125))/6 a(9)=(-1134+3*a(95)+a(98)+2*a(99)+2*a(100)+3*a(117)+2*a(118)-2*a(119)+4*a(120)+3*a(122)+3*a(125))/3 a(8)=(-378-2*a(98)+2*a(99)-a(100)+3*a(117)-4*a(118)+a(119)+a(120)+6*a(122)-3*a(123)+6*a(124))/3 a(7)=(2268-3*a(95)+2*a(98)-2*a(99)-2*a(100)-6*a(117)+a(118)-a(119)-4*a(120)-9*a(122)-6*a(124)-3*a(125))/3 a(6)=(-567+3*a(95)-4*a(98)-5*a(99)-2*a(100)+3*a(117)+a(118)+2*a(119)+2*a(120)+6*a(122)+3*a(123)+3*a(124)+3*a(125))/6 a(5)=(-1890+3*a(95)+2*a(98)+a(99)+a(100)+6*a(117)+4*a(118)-a(119)+5*a(120)+3*a(122)+3*a(123)+6*a(125))/3 a(4)=(-693+a(95)-2*a(98)+a(99)+3*a(117)-a(118)+2*a(120)+4*a(122)-a(123)+5*a(124)+a(125))/2 a(3)=(756-a(98)-2*a(99)+a(100)-3*a(117)-2*a(118)-a(119)-a(120))/3 a(2)=(1323-3*a(95)-4*a(98)+a(99)-2*a(100)-3*a(117)-5*a(118)+2*a(119)-4*a(120)+6*a(122)-3*a(123)+3*a(124)-3*a(125))/6 a(1)=(2457-3*a(95)+4*a(98)-a(99)-a(100)-6*a(117)+2*a(118)+a(119)-5*a(120)-12*a(122)-9*a(124)-6*a(125))/3
The linear equations shown above, are ready to be solved, for the magic constant 315.
0 < a(i) =< 125 for i = 1 ... 94, 96, 97, 101 ... 116, 121
which can be incorporated in a guessing routine, which might be used to find other 5th order Pantriagonal Magic Cubes.
Although not consisered in the analysis above, the Moryama Cube is an Associated Pantriagonal Magic Cube.
a(121) = 315 - a(122) - a(123) - a(124) - a(125) a(116) = 315 - a(117) - a(118) - a(119) - a(120) a(115) = 315 - a(117) - a(118) - a(120) - a(125) a(114) = a(118) + a(120) - a(124) a(113) = a(117) + a(119) - a(123) a(112) = 315 - a(117) - a(119) - a(120) - a(122) a(111) = 315 - a(112) - a(113) - a(114) - a(115) a(110) = a(111) + a(118) - a(124) a(109) = 315 - a(118) - a(120) - a(123) - a(125) a(108) = 315 - a(117) - a(119) - a(122) - a(124) a(107) = 315 - a(116) - a(118) - a(121) - a(123) a(106) = 315 - a(107) - a(108) - a(109) - a(110) a(105) = 315 - a(110) - a(115) - a(120) - a(125) a(104) = 315 - a(109) - a(114) - a(119) - a(124) a(103) = 315 - a(108) - a(113) - a(118) - a(123) a(102) = 315 - a(107) - a(112) - a(117) - a(122) a(101) = 315 - a(106) - a(111) - a(116) - a(121) a(100) = 189 - a(116) - a(123) a( 99) = 189 - a(117) - a(122) + a(123) - a(124) a( 98) =-126 - a(118) + 2 * a(122) + 2 * a(124) a( 97) = 189 - a(119) - a(122) + a(123) - a(124) a( 96) = 315 - a( 97) - a( 98) - a( 99) - a(100) a( 95) = 504 - 2 * a(117) - a(118) - 2 * a(120) - a(122) - a(125) a( 94) = 189 - a(116) + a(120) - a(121) - a(123) a( 93) = 189 - a(122) - a(124) a( 92) = 189 + a(116) - a(120) - a(123) - a(125) a( 91) = 315 - a( 92) - a( 93) - a( 94) - a( 95) a( 90) =-126 + 2 * a(117) + a(118) + 3 * a(120) - 2 * a(121) - a(124) a( 89) = 189 - a(117) - a(118) - 2 * a(120) + a(121) + a(124) a( 88) =-126 + a(118) + a(121) + a(125) a( 87) = 63 - a( 95) + a(119) a( 86) = 315 - a( 87) - a( 88)- a( 89) - a( 90) a( 85) = 819 - 2 * a(117) - 2 * a(118) - a(119) - 3 * a(120) - a(122) - a(123) - 2 * a(125) a( 84) = 189 - a(116) - 2 * a(119) + a(123) - a(124) + a(125) a( 83) = 63 - a( 97) + a(117) a( 82) = 504 - 2 * a(117) - a(120) - 2 * a(122) - a(124) - a(125) a( 81) = 315 - a( 82) - a( 83) - a( 84) - a( 85) a( 80) = 315 - a( 85) - a( 90) - a( 95) - a(100) a( 79) = 315 - a( 84) - a( 89) - a( 94) - a( 99) a( 78) = 315 - a( 83) - a( 88) - a( 93) - a( 98) a( 77) = 315 - a( 82) - a( 87) - a( 92) - a( 97) a( 76) = 315 - a( 81) - a( 86) - a( 91) - a( 96) a( 75) = 378 - a(117) - a(120) - a(122) - a(124) - a(125) a( 74) =-252 + a(117) + a(119) + a(120) + 2 * a(122) - a(123) + a(124) a( 73) = 378 - a(117) - a(119) - 2 * a(122) + a(123) - 2 * a(124) a( 72) =-126 + a( 79) + a(124) + a(125) a( 71) = 315 - a( 72) - a( 73) - a( 74) - a(75) a( 70) = 252 - a( 86) - a(121) - a(125) a( 69) = 252 - a( 87) - a(122) - a(124) a( 68) = 63 - a(118) + a(122) - a(123) + a(124) a( 67) = 189 + a( 91) - a(117) - a(122) - a(124) a( 66) = 315 - a( 67) - a( 68) - a( 69) - a( 70) a( 65) = 189 + a( 86) - a(120) - a(122) - a(123) a( 64) = 189 + a( 81) - a(119) - a(120) - a(122)
Also these equations can be applied in an efficient method to generate Associated Pantriagonal Magic Cubes, which will be discussed in Section 5.6b.
|
Index | About the Author |