Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
8.2 Magic Squares, Composed of Sub Squares
In 1892 Edward Falkener published following 8th order Magic Square, composed out of four 4th order Associated Magic Sub Squares:
The square has following additional properties:
a(61) = 0.5 * s1 - a(62) - a(63) - a(64) a(57) = 0.5 * s1 - a(58) - a(59) - a(60) a(55) = 0.5 * s1 - a(56) - a(63) - a(64) a(54) = 0.5 * s1 - a(56) - a(62) - a(64) a(53) =-0.5 * s1 + a(56) + a(62) + a(63) + 2 * a(64) a(51) = 0.5 * s1 - a(52) - a(59) - a(60) a(50) = 0.5 * s1 - a(52) - a(58) - a(60) a(49) =-0.5 * s1 + a(52) + a(58) + a(59) + 2 * a(60) a(48) = 0.75 * s1 - a(56) - a(62) - a(63) - 2 * a(64) a(47) =-0.25 * s1 + a(56) + a(62) + a(64) a(46) =-0.25 * s1 + a(56) + a(63) + a(64) a(45) = 0.25 * s1 - a(56) a(44) = 0.75 * s1 - a(52) - a(58) - a(59) - 2 * a(60) a(43) =-0.25 * s1 + a(52) + a(58) + a(60) a(42) =-0.25 * s1 + a(52) + a(59) + a(60) a(41) = 0.25 * s1 - a(52) a(40) =-0.25 * s1 + a(62) + a(63) + a(64) a(39) = 0.25 * s1 - a(62) a(38) = 0.25 * s1 - a(63) a(37) = 0.25 * s1 - a(64) a(36) =-0.25 * s1 + a(58) + a(59) + a(60) a(35) = 0.25 * s1 - a(58) a(34) = 0.25 * s1 - a(59) a(33) = 0.25 * s1 - a(60) a(29) = 0.5 * s1 - a(30) - a(31) - a(32) a(25) = 0.5 * s1 - a(26) - a(27) - a(28) a(23) = 0.5 * s1 - a(24) - a(31) - a(32) a(22) = 0.5 * s1 - a(24) - a(30) - a(32) a(21) =-0.5 * s1 + a(24) + a(30) + a(31) + 2 * a(32) a(19) = 0.5 * s1 - a(20) - a(27) - a(28) a(18) = 0.5 * s1 - a(20) - a(26) - a(28) a(17) =-0.5 * s1 + a(20) + a(26) + a(27) + 2 * a(28) a(16) = 0.75 * s1 - a(24) - a(30) - a(31) - 2 * a(32) a(15) =-0.25 * s1 + a(24) + a(30) + a(32) a(14) =-0.25 * s1 + a(24) + a(31) + a(32) a(13) = 0.25 * s1 - a(24) a(12) = 0.75 * s1 - a(20) - a(26) - a(27) - 2 * a(28) a(11) =-0.25 * s1 + a(20) + a(26) + a(28) a(10) =-0.25 * s1 + a(20) + a(27) + a(28) a( 9) = 0.25 * s1 - a(20) a( 8) =-0.25 * s1 + a(30) + a(31) + a(32) a( 7) = 0.25 * s1 - a(30) a( 6) = 0.25 * s1 - a(31) a( 5) = 0.25 * s1 - a(32) a( 4) =-0.25 * s1 + a(26) + a(27) + a(28) a( 3) = 0.25 * s1 - a(26) a( 2) = 0.25 * s1 - a(27) a( 1) = 0.25 * s1 - a(28)
The 16 independent variables are corner points of four of the 5 x 5 Sub Squares, for which the third property applies.
8.2.5 Analytic Solution, Pan Magic Squares composed of Pan Magic Sub Squares In 1810 L.S. Frierson published following 8th order Pan Magic Square, composed out of four 4th order Pan Magic Sub Squares (left):
The square has following additional properties:
The properties mentioned above result, after deduction, in following set of linear equations: a(61) = 0.5 * s1 - a(62) - a(63) - a(64) a(59) = a(60) + a(63) - a(64) a(58) = - a(60) + a(62) + a(64) a(57) = 0.5 * s1 - a(60) - a(62) - a(63) a(55) = 0.5 * s1 - a(56) - a(63) - a(64) a(54) = a(56) - a(62) + a(64) a(53) = - a(56) + a(62) + a(63) a(52) = a(56) - a(60) + a(64) a(51) = 0.5 * s1 - a(56) - a(60) - a(63) a(50) = a(56) + a(60) - a(62) a(49) = - a(56) + a(60) + a(62) + a(63) - a(64) a(48) = 0.25 * s1 - a(62) a(47) =-0.25 * s1 + a(62) + a(63) + a(64) a(46) = 0.25 * s1 - a(64) a(45) = 0.25 * s1 - a(63) a(44) = 0.25 * s1 + a(60) - a(62) - a(64) a(43) =-0.25 * s1 + a(60) + a(62) + a(63) a(42) = 0.25 * s1 - a(60) a(41) = 0.25 * s1 - a(60) - a(63) + a(64) a(40) = 0.25 * s1 - a(56) + a(62) - a(64) a(39) = 0.25 * s1 + a(56) - a(62) - a(63) a(38) = 0.25 * s1 - a(56) a(37) =-0.25 * s1 + a(56) + a(63) + a(64) a(36) = 0.25 * s1 - a(56) - a(60) + a(62) a(35) = 0.25 * s1 + a(56) - a(60) - a(62) - a(63) + a(64) a(34) = 0.25 * s1 - a(56) + a(60) - a(64) a(33) =-0.25 * s1 + a(56) + a(60) + a(63) a(31) = a(32) + a(63) - a(64) a(30) = - a(32) + a(62) + a(64) a(29) = 0.5 * s1 - a(32) - a(62) - a(63) a(28) = a(32) + a(60) - a(64) a(27) = a(32) + a(60) + a(63) - 2 * a(64) a(26) = - a(32) - a(60) + a(62) + 2 * a(64) a(25) = 0.5 * s1 - a(32) - a(60) - a(62) - a(63) + a(64) a(24) = - a(32) + a(56) + a(64) a(23) = 0.5 * s1 - a(32) - a(56) - a(63) a(22) = a(32) + a(56) - a(62) a(21) = a(32) - a(56) + a(62) + a(63) - a(64) a(20) = - a(32) + a(56) - a(60) + 2 * a(64) a(19) = 0.5 * s1 - a(32) - a(56) - a(60) - a(63) + a(64) a(18) = a(32) + a(56) + a(60) - a(62) - a(64) a(17) = a(32) - a(56) + a(60) + a(62) + a(63) - 2 * a(64) a(16) = 0.25 * s1 + a(32) - a(62) - a(64) a(15) =-0.25 * s1 + a(32) + a(62) + a(63) a(14) = 0.25 * s1 - a(32) a(13) = 0.25 * s1 - a(32) - a(63) + a(64) a(12) = 0.25 * s1 + a(32) + a(60) - a(62) - 2 * a(64) a(11) =-0.25 * s1 + a(32) + a(60) + a(62) + a(63) - a(64) a(10) = 0.25 * s1 - a(32) - a(60) + a(64) a( 9) = 0.25 * s1 - a(32) - a(60) - a(63) + 2 * a(64) a( 8) = 0.25 * s1 - a(32) - a(56) + a(62) a( 7) = 0.25 * s1 - a(32) + a(56) - a(62) - a(63) + a(64) a( 6) = 0.25 * s1 + a(32) - a(56) - a(64) a( 5) =-0.25 * s1 + a(32) + a(56) + a(63) a( 4) = 0.25 * s1 - a(32) - a(56) - a(60) + a(62) + a(64) a( 3) = 0.25 * s1 - a(32) + a(56) - a(60) - a(62) - a(63) + 2 * a(64) a( 2) = 0.25 * s1 + a(32) - a(56) + a(60) - 2 * a(64) a( 1) =-0.25 * s1 + a(32) + a(56) + a(60) + a(63) - a(64)
The 6 independent variables are corner points of four of the 5 x 5 Sub Squares, for which the last property applies.
8.2.6 Analytic Solution, Magic Squares composed of Magic Sub Squares Another 8th order Magic Square, composed out of four 4th order Magic Sub Squares, published by L.S. Frierson is shown below (left):
The square has following additional properties:
Properties 6 and 7 are a consequence of property 5.
a(61) = 0.5 * s1 - a(62) - a(63) - a(64) a(57) = 0.5 * s1 - a(58) - a(59) - a(60) a(55) = 0.5 * s1 - a(56) - a(63) - a(64) a(53) = - a(54) + a(63) + a(64) a(52) = a(56) - a(59) + a(63) a(51) = 0.5 * s1 - a(56) - a(60) - a(63) a(50) = a(54) + a(58) + a(59) + a(60) - a(62) - a(63) - a(64) a(49) = - a(54) - a(58) + a(62) + a(63) + a(64) a(47) =-0.5 * s1 + a(48) - a(54) + a(56) + a(62) + a(63) + 2 * a(64) a(46) = 0.5 * s1 - a(48) - a(62) - a(64) a(45) = 0.5 * s1 - a(48) + a(54) - a(56) - a(63) - a(64) a(44) = a(48) + a(59) - a(63) a(43) =-0.5 * s1 + a(48) - a(54) + a(56) + a(60) + a(62) + a(63) + a(64) a(42) = 0.5 * s1 - a(48) - a(58) - a(59) - a(60) + a(63) a(41) = 0.5 * s1 - a(48) + a(54) - a(56) + a(58) - a(62) - a(63) - a(64) a(40) = 0.5 * s1 - a(48) - a(56) - a(64) a(39) = 0.5 * s1 - a(48) + a(54) - a(62) - a(63) - a(64) a(38) = a(48) - a(54) + a(64) a(37) =-0.5 * s1 + a(48) + a(56) + a(62) + a(63) + a(64) a(36) = 0.5 * s1 - a(48) - a(56) - a(60) a(35) = 0.5 * s1 - a(48) + a(54) - a(59) - a(62) - a(64) a(34) = a(48) - a(54) - a(58) + a(62) + a(64) a(33) =-0.5 * s1 + a(48) + a(56) + a(58) + a(59) + a(60) a(31) = a(32) + a(63) - a(64) a(30) = - a(32) + a(62) + a(64) a(29) = 0.5 * s1 - a(32) - a(62) - a(63) a(28) = a(32) + a(60) - a(64) a(27) = a(32) + a(59) - a(64) a(26) = - a(32) + a(58) + a(64) a(25) = 0.5 * s1 - a(32) - a(58) - a(59) - a(60) + a(64) a(24) = - a(32) + a(56) + a(64) a(23) = 0.5 * s1 - a(32) - a(56) - a(63) a(22) = a(32) + a(54) - a(64) a(21) = a(32) - a(54) + a(63) a(20) = - a(32) + a(56) - a(59) + a(63) + a(64) a(19) = 0.5 * s1 - a(32) - a(56) - a(60) - a(63) + a(64) a(18) = a(32) + a(54) + a(58) + a(59) + a(60) - a(62) - a(63) - 2 * a(64) a(17) = a(32) - a(54) - a(58) + a(62) + a(63) a(15) =-0.5 * s1 + a(16) - a(54) + a(56) + a(62) + a(63) + 2 * a(64) a(14) = 0.5 * s1 - a(16) - a(62) - a(64) a(13) = 0.5 * s1 - a(16) + a(54) - a(56) - a(63) - a(64) a(12) = a(16) + a(59) - a(63) a(11) =-0.5 * s1 + a(16) - a(54) + a(56) + a(60) + a(62) + a(63) + a(64) a(10) = 0.5 * s1 - a(16) - a(58) - a(59) - a(60) + a(63) a( 9) = 0.5 * s1 - a(16) + a(54) - a(56) + a(58) - a(62) - a(63) - a(64) a( 8) = 0.5 * s1 - a(16) - a(56) - a(64) a( 7) = 0.5 * s1 - a(16) + a(54) - a(62) - a(63) - a(64) a( 6) = a(16) - a(54) + a(64) a( 5) =-0.5 * s1 + a(16) + a(56) + a(62) + a(63) + a(64) a( 4) = 0.5 * s1 - a(16) - a(56) - a(60) a( 3) = 0.5 * s1 - a(16) + a(54) - a(59) - a(62) - a(64) a( 2) = a(16) - a(54) - a(58) + a(62) + a(64) a( 1) =-0.5 * s1 + a(16) + a(56) + a(58) + a(59) + a(60)
The 11 independent variables are corner points of six of the 5 x 5 Sub Squares, for which the last property applies.
8.2.7 Analytic Solution, Concentric Pan Magic Squares, Pan Magic Center Square, Composed Border In 1912 Harry A. Sayles published following 8th order Concentric Pan Magic Square, composed out of a 4th order Pan Magic Center Square and a Composed Border:
The Concentric Pan Magic Square contains two embedded order 4 Simple Magic Squares (Middle Rows).
The properties mentioned above result, after deduction, in following set of linear equations: a(61) = 0.5 * s1 - a(62) - a(63) - a(64) a(59) = - a(60) + a(63) + a(64) a(58) = - a(60) + a(62) + a(64) a(57) = 0.5 * s1 + a(60) - a(62) - a(63) - 2 * a(64) a(55) = 0.5 * s1 - a(56) - a(63) - a(64) a(54) = a(56) + 2 * a(60) - a(62) - a(64) a(53) = - a(56) - 2 * a(60) + a(62) + a(63) + 2 * a(64) a(52) = a(56) + a(60) - a(64) a(51) = 0.5 * s1 - a(56) - a(60) - a(63) a(50) = a(56) + a(60) - a(62) a(49) = - a(56) - a(60) + a(62) + a(63) + a(64) a(47) = - a(48) + a(63) + a(64) a(46) = a(48) - 2 * a(60) + a(62) + a(64) a(45) = 0.5 * s1 - a(48) + 2 * a(60) - a(62) - a(63) - 2 * a(64) a(44) = a(48) - a(60) + a(64) a(43) = - a(48) + a(60) + a(63) a(42) = a(48) - a(60) + a(62) a(41) = 0.5 * s1 - a(48) + a(60) - a(62) - a(63) - a(64) a(40) = a(48) - a(56) - 2 * a(60) + 2 * a(62) + a(64) a(39) = 0.5 * s1 - a(48) + a(56) + 2 * a(60) - 2 * a(62) - a(63) - 2 * a(64) a(38) = a(48) - a(56) - 2 * a(60) + a(62) + 2 * a(64) a(37) = - a(48) + a(56) + 2 * a(60) - a(62) + a(63) - a(64) a(36) = a(48) - a(56) - 3 * a(60) + 2 * a(62) + 2 * a(64) a(35) = 0.5 * s1 - a(48) + a(56) + 3 * a(60) - 2 * a(62) - a(63) - 3 * a(64) a(34) = a(48) - a(56) - a(60) + a(62) + a(64) a(33) = - a(48) + a(56) + a(60) - a(62) + a(63) a(32) = 0.25 * s1 - a(48) + a(60) - a(62) a(31) = -0.25 * s1 + a(48) - a(60) + a(62) + a(63) + a(64) a(30) = 0.25 * s1 - a(48) + a(60) - a(64) a(29) = 0.25 * s1 + a(48) - a(60) - a(63) a(28) = 0.25 * s1 - a(48) + 2 * a(60) - a(62) - a(64) a(27) = -0.25 * s1 + a(48) - 2 * a(60) + a(62) + a(63) + 2 * a(64) a(26) = 0.25 * s1 - a(48) a(25) = 0.25 * s1 + a(48) - a(63) - a(64) a(24) = 0.25 * s1 - a(48) + a(56) + a(60) - a(62) - a(64) a(23) = 0.25 * s1 + a(48) - a(56) - a(60) + a(62) - a(63) a(22) = 0.25 * s1 - a(48) + a(56) + 3 * a(60) - 2 * a(62) - 2 * a(64) a(21) = -0.25 * s1 + a(48) - a(56) - 3 * a(60) + 2 * a(62) + a(63) + 3 * a(64) a(20) = 0.25 * s1 - a(48) + a(56) + 2 * a(60) - a(62) - 2 * a(64) a(19) = 0.25 * s1 + a(48) - a(56) - 2 * a(60) + a(62) - a(63) + a(64) a(18) = 0.25 * s1 - a(48) + a(56) + 2 * a(60) - 2 * a(62) - a(64) a(17) = -0.25 * s1 + a(48) - a(56) - 2 * a(60) + 2 * a(62) + a(63) + 2 * a(64) a(16) = 0.25 * s1 + a(60) - a(62) - a(64) a(15) = -0.25 * s1 - a(60) + a(62) + a(63) + 2 * a(64) a(14) = 0.25 * s1 - a(60) a(13) = 0.25 * s1 + a(60) - a(63) - a(64) a(12) = 0.25 * s1 - a(62) a(11) = -0.25 * s1 + a(62) + a(63) + a(64) a(10) = 0.25 * s1 - a(64) a( 9) = 0.25 * s1 - a(63) a( 8) = 0.25 * s1 - a(56) - a(60) + a(62) a( 7) = 0.25 * s1 + a(56) + a(60) - a(62) - a(63) - a(64) a( 6) = 0.25 * s1 - a(56) - a(60) + a(64) a( 5) = -0.25 * s1 + a(56) + a(60) + a(63) a( 4) = 0.25 * s1 - a(56) - 2 * a(60) + a(62) + a(64) a( 3) = 0.25 * s1 + a(56) + 2 * a(60) - a(62) - a(63) - 2 * a(64) a( 2) = 0.25 * s1 - a(56) a( 1) = -0.25 * s1 + a(56) + a(63) + a(64)
The 6 independent variables are corner points of five of the 5 x 5 Sub Squares, for which the last property applies.
The linear equations deducted in previous sections, have been applied in following Excel Spread Sheets:
Only the red figures have to be “guessed” to construct one of the applicable (Pan) Magic Squares of the 8th order (wrong solutions are obvious).
|
Index | About the Author |