Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
10.4 Pan Magic Squares, Non Consecutive Integers
As mentioned in Section 6.1 Pan Magic Squares of order (4n + 2) -
based on consequtive distinct integers - don't exist.
It should be noted that this Pan Magic Square has also following properties:
10.4.2 Analysis (Most Perfect Pan Magic)
The properties mentioned in section 10.4.1 above result in following set of linear equations:
a( 1)+a( 2)+a( 3)+a( 4)+a( 5)+a( 6)+a( 7)+a( 8)+a( 9)+a( 10) = s1
Each 2 × 2 sub square sums to 2/5 * Magic Constant:
a(i) + a(i+1) + a(i+10) + a(i+11) = 2 * s1/5 with 1 =< i < 90 and i ≠ 10 * n for n = 1, 2 ... 9
Consequently all (Pan) Diagonals will sum to the Magic Constant.
The resulting number of equations can be written in the matrix representation as:
which can be reduced, by means of row and column manipulations, and results in following set of linear equations: a(95) = s1 - 2 * a(96) - 2 * a(97) - 2 * a(98) - 2 * a(99) - a(100) a(94) = - s1 + 2 * a(96) + 2 * a(97) + 2 * a(98) + 3 * a(99) + 2 * a(100) a(93) = s1 - 2 * a(96) - 2 * a(97) - a(98) - 2 * a(99) - 2 * a(100) a(92) = - s1 + 2 * a(96) + 3 * a(97) + 2 * a(98) + 2 * a(99) + 2 * a(100) a(91) = s1 - a(96) - 2 * a(97) - 2 * a(98) - 2 * a(99) - 2 * a(100) a(89) = 0.4 * s1 - a(90) - a(99) - a(100) a(88) = a(90) - a(98) + a(100) a(87) = 0.4 * s1 - a(90) - a(97) - a(100) a(86) = a(90) - a(96) + a(100) a(85) =-0.6 * s1 - a(90) + 2 * a(96) + 2 * a(97) + 2 * a(98) + 2 * a(99) a(84) = s1 + a(90) - 2 * a(96) - 2 * a(97) - 2 * a(98) - 3 * a(99) - a(100) a(83) =-0.6 * s1 - a(90) + 2 * a(96) + 2 * a(97) + a(98) + 2 * a(99) + a(100) a(82) = s1 + a(90) - 2 * a(96) - 3 * a(97) - 2 * a(98) - 2 * a(99) - a(100) a(81) =-0.6 * s1 - a(90) + a(96) + 2 * a(97) + 2 * a(98) + 2 * a(99) + a(100) a(79) = - a(80) + a(99) + a(100) a(78) = a(80) + a(98) - a(100) a(77) = - a(80) + a(97) + a(100) a(76) = a(80) + a(96) - a(100) a(75) = s1 - a(80) - 2 * a(96) - 2 * a(97) - 2 * a(98) - 2 * a(99) a(74) = - s1 + a(80) + 2 * a(96) + 2 * a(97) + 2 * a(98) + 3 * a(99) + a(100) a(73) = s1 - a(80) - 2 * a(96) - 2 * a(97) - a(98) - 2 * a(99) - a(100) a(72) = - s1 + a(80) + 2 * a(96) + 3 * a(97) + 2 * a(98) + 2 * a(99) + a(100) a(71) = s1 - a(80) - a(96) - 2 * a(97) - 2 * a(98) - 2 * a(99) - a(100) a(69) = 0.4 * s1 - a(70) - a(99) - a(100) a(68) = a(70) - a(98) + a(100) a(67) = 0.4 * s1 - a(70) - a(97) - a(100) a(66) = a(70) - a(96) + a(100) a(65) =-0.6 * s1 - a(70) + 2 * a(96) + 2 * a(97) + 2 * a(98) + 2 * a(99) a(64) = s1 + a(70) - 2 * a(96) - 2 * a(97) - 2 * a(98) - 3 * a(99) - a(100) a(63) =-0.6 * s1 - a(70) + 2 * a(96) + 2 * a(97) + a(98) + 2 * a(99) + a(100) a(62) = s1 + a(70) - 2 * a(96) - 3 * a(97) - 2 * a(98) - 2 * a(99) - a(100) a(61) =-0.6 * s1 - a(70) + a(96) + 2 * a(97) + 2 * a(98) + 2 * a(99) + a(100) a(60) = 0.9 * s1 - a(70) - a(80) - a(90) - a(96) - a(97) - a(98) - a(99) - a(100) a(59) =-0.9 * s1 + a(70) + a(80) + a(90) + a(96) + a(97) + a(98) + 2 * a(99) + 2 * a(100) a(58) = 0.9 * s1 - a(70) - a(80) - a(90) - a(96) - a(97) - a(99) - 2 * a(100) a(57) =-0.9 * s1 + a(70) + a(80) + a(90) + a(96) + 2 * a(97) + a(98) + a(99) + 2 * a(100) a(56) = 0.9 * s1 - a(70) - a(80) - a(90) - a(97) - a(98) - a(99) - 2 * a(100) a(55) = 0.1 * s1 + a(70) + a(80) + a(90) - a(96) - a(97) - a(98) - a(99) + a(100) a(54) =-0.1 * s1 - a(70) - a(80) - a(90) + a(96) + a(97) + a(98) + 2 * a(99) a(53) = 0.1 * s1 + a(70) + a(80) + a(90) - a(96) - a(97) - a(99) a(52) =-0.1 * s1 - a(70) - a(80) - a(90) + a(96) + 2 * a(97) + a(98) + a(99) a(51) = 0.1 * s1 + a(70) + a(80) + a(90) - a(97) - a(98) - a(99)
The solutions can be obtained by guessing a(100), a(99), a(98), a(97), a(96), a(90), a(80) and a(70)
and filling out these guesses in the abovementioned equations.
A routine can be written to generate Most Perfect Pan Magic Squares of order 10 (ref. MgcSqr10d).
10.4.3 Analysis (Associated, Compact, Pan Magic)
For Associated Compact Pan Magic Squares, only the equations defining the pairs of integers distant 10/2 along each diagonal have to be replaced by the equations ensuring the Center Symmetry.
a(95) = s1 - a(96) - 2 * a(97) - 2 * a(98) - 2 * a(99) - 2 * a(100) a(94) = - s1 + 2 * a(96) + 3 * a(97) + 2 * a(98) + 2 * a(99) + 2 * a(100) a(93) = s1 - 2 * a(96) - 2 * a(97) - a(98) - 2 * a(99) - 2 * a(100) a(92) = - s1 + 2 * a(96) + 2 * a(97) + 2 * a(98) + 3 * a(99) + 2 * a(100) a(91) = s1 - 2 * a(96) - 2 * a(97) - 2 * a(98) - 2 * a(99) - a(100) a(89) = 0.4 * s1 - a(90) - a(99) - a(100) a(88) = a(90) - a(98) + a(100) a(87) = 0.4 * s1 - a(90) - a(97) - a(100) a(86) = a(90) - a(96) + a(100) a(85) = -0.6 * s1 - a(90) + a(96) + 2 * a(97) + 2 * a(98) + 2 * a(99) + a(100) a(84) = s1 + a(90) - 2 * a(96) - 3 * a(97) - 2 * a(98) - 2 * a(99) - a(100) a(83) = -0.6 * s1 - a(90) + 2 * a(96) + 2 * a(97) + a(98) + 2 * a(99) + a(100) a(82) = s1 + a(90) - 2 * a(96) - 2 * a(97) - 2 * a(98) - 3 * a(99) - a(100) a(81) = -0.6 * s1 - a(90) + 2 * a(96) + 2 * a(97) + 2 * a(98) + 2 * a(99) a(79) = - a(80) + a(99) + a(100) a(78) = a(80) + a(98) - a(100) a(77) = - a(80) + a(97) + a(100) a(76) = a(80) + a(96) - a(100) a(75) = s1 - a(80) - a(96) - 2 * a(97) - 2 * a(98) - 2 * a(99) - a(100) a(74) = - s1 + a(80) + 2 * a(96) + 3 * a(97) + 2 * a(98) + 2 * a(99) + a(100) a(73) = s1 - a(80) - 2 * a(96) - 2 * a(97) - a(98) - 2 * a(99) - a(100) a(72) = - s1 + a(80) + 2 * a(96) + 2 * a(97) + 2 * a(98) + 3 * a(99) + a(100) a(71) = s1 - a(80) - 2 * a(96) - 2 * a(97) - 2 * a(98) - 2 * a(99) a(69) = 0.4 * s1 - a(70) - a(99) - a(100) a(68) = a(70) - a(98) + a(100) a(67) = 0.4 * s1 - a(70) - a(97) - a(100) a(66) = a(70) - a(96) + a(100) a(65) = -0.6 * s1 - a(70) + a(96) + 2 * a(97) + 2 * a(98) + 2 * a(99) + a(100) a(64) = s1 + a(70) - 2 * a(96) - 3 * a(97) - 2 * a(98) - 2 * a(99) - a(100) a(63) = -0.6 * s1 - a(70) + 2 * a(96) + 2 * a(97) + a(98) + 2 * a(99) + a(100) a(62) = s1 + a(70) - 2 * a(96) - 2 * a(97) - 2 * a(98) - 3 * a(99) - a(100) a(61) = -0.6 * s1 - a(70) + 2 * a(96) + 2 * a(97) + 2 * a(98) + 2 * a(99) a(60) = 0.9 * s1 - a(70) - a(80) - a(90) - a(96) - a(97) - a(98) - a(99) - a(100) a(59) = -0.9 * s1 + a(70) + a(80) + a(90) + a(96) + a(97) + a(98) + 2 * a(99) + 2 * a(100) a(58) = 0.9 * s1 - a(70) - a(80) - a(90) - a(96) - a(97) - a(99) - 2 * a(100) a(57) = -0.9 * s1 + a(70) + a(80) + a(90) + a(96) + 2 * a(97) + a(98) + a(99) + 2 * a(100) a(56) = 0.9 * s1 - a(70) - a(80) - a(90) - a(97) - a(98) - a(99) - 2 * a(100) a(55) = 0.1 * s1 + a(70) + a(80) + a(90) - a(97) - a(98) - a(99) a(54) = -0.1 * s1 - a(70) - a(80) - a(90) + a(96) + 2 * a(97) + a(98) + a(99) a(53) = 0.1 * s1 + a(70) + a(80) + a(90) - a(96) - a(97) - a(99) a(52) = -0.1 * s1 - a(70) - a(80) - a(90) + a(96) + a(97) + a(98) + 2 * a(99) a(51) = 0.1 * s1 + a(70) + a(80) + a(90) - a(96) - a(97) - a(98) - a(99) + a(100)
The solutions can be obtained by guessing a(100), a(99), a(98), a(97), a(96), a(90), a(80) and a(70)
and filling out these guesses in the abovementioned equations.
A routine can be written to generate Assiciated Compact Pan Magic Squares of order 10 (ref. MgcSqr10e).
The linear equations deducted in Section 10.4.2 and 10.4.3 above, have been applied in following Excel Spread Sheets:
The red figures have to be “guessed” to construct a Pan Magic Square of the 10th order (wrong solutions are obvious).
|
Index | About the Author |