Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
15.0 Special Magic Squares, Bimagic Squares, Part 3
The Pan Diagonal/Complete Bimagic Square shown below has originally been constructed by Benson and Jacobi.
The square has following additional properties:
The properties mentioned above are illustrated in Spreadsheet Solution CnstrSngl8m
and result, a(61) = 0.5 * s1 - a(62) - a(63) - a(64) a(57) = 0.5 * s1 - a(58) - a(59) - a(60) a(54) = 0.5 * s1 - a(55) - a(62) - a(63) a(53) = - a(56) + a(62) + a(63) a(52) =-0.5 * s1 + a(55) + a(58) + a(62) + a(63) + a(64) a(51) = 0.5 * s1 + a(56) - a(58) - a(59) - a(60) - a(62) a(50) = - a(56) + a(60) + a(62) a(49) = 0.5 * s1 - a(55) + a(59) - a(62) - a(63) - a(64) a(47) = a(48) - a(58) - a(60) + a(62) + a(63) a(46) = - a(48) + a(58) + a(60) a(45) = 0.5 * s1 - a(48) - a(62) - a(63) a(44) = a(48) - a(58) - a(59) - a(60) + a(62) + a(63) + a(64) a(43) = a(48) - a(60) + a(63) a(42) = - a(48) + a(58) + a(59) + a(60) - a(63) a(41) = 0.5 * s1 - a(48) + a(60) - a(62) - a(63) - a(64) a(40) = - a(48) - a(56) + a(58) + a(60) + a(62) a(39) = s1 - a(48) - a(55) - 2 * a(62) - 2 * a(63) - a(64) a(38) =-0.5 * s1 + a(48) + a(55) + a(62) + a(63) + a(64) a(37) = a(48) + a(56) - a(58) - a(60) + a(63) a(36) = 0.5 * s1 - a(48) - a(55) + a(58) + a(59) + a(60) - a(62) - 2 * a(63) - a(64) a(35) = 0.5 * s1 - a(48) - a(56) + a(60) - a(63) - a(64) a(34) = a(48) + a(56) - a(58) - a(59) - a(60) + a(63) + a(64) a(33) =-0.5 * s1 + a(48) + a(55) - a(60) + a(62) + 2 * a(63) + a(64)
The solutions can be obtained by:
which makes a guessing routine relatively fast.
Verification: The obtained results regarding the miscellaneous types of order 8 Bimagic Squares as deducted and discussed in previous sections are summarized in following table: |
Main Characteristics
Original Author(s)
Subroutine
Results
Pan Diagonal, Complete
Benson/Jacobi
-
-
-
-
Next section will provide some examples of classical construction methods for Bimagic Squares of order 9.
|
Index | About the Author |