Office Applications and Entertainment, Magic Squares

Vorige Pagina Attachment 6.13.1 About the Author

Historical Partly Bimagic - and Bimagic Squares Order 6

Partly Bimagic

s1=150, s2=5150 (Pfefferman)
6 42 29 3 40 30
8 44 47 21 20 10
33 31 41 37 1 7
19 17 13 9 43 49
36 2 5 35 34 38
48 14 15 45 12 16
s1=168, s2=6524 (Boyer)
41 35 6 2 37 47
5 42 33 39 46 3
38 7 45 43 1 34
22 55 13 11 49 18
53 10 17 23 14 51
9 19 54 50 21 15


Jaroslaw Wroblewski, Bimagic, Associated

s1=408, s2=36826
17 36 55 124 62 114
58 40 129 50 111 20
108 135 34 44 38 49
87 98 92 102 1 28
116 25 86 7 96 78
22 74 12 81 100 119
s1=618, s2=86978
1 62 78 138 186 153
94 126 193 25 154 26
124 173 76 184 21 40
166 185 22 130 33 82
180 52 181 13 80 112
53 20 68 128 144 205
s1=648, s2=86684
23 82 151 190 109 93
99 75 135 159 166 14
90 215 102 39 97 105
111 119 177 114 1 126
202 50 57 81 141 117
123 107 26 65 134 193
s1=714, s2=111074
18 48 126 145 204 173
110 161 237 88 92 26
184 101 86 216 14 113
125 224 22 152 137 54
212 146 150 1 77 128
65 34 93 112 190 220


Lee Morgenstern, Bimagic, Crosswise Symmetric

s1=219, s2=10663
72 18 17 16 49 47
13 52 36 5 50 63
38 35 7 66 15 58
20 53 34 39 69 4
55 1 57 56 26 24
21 60 68 37 10 23
Column Symmetric Center Lines
s1=330, s2=26432
9 83 105 84 15 34
27 101 26 5 76 95
109 78 28 13 17 85
32 1 97 82 25 93
54 11 67 103 91 4
99 56 7 43 106 19


Vorige Pagina About the Author