Historical Partly Bimagic - and Bimagic Squares Order 6
Partly Bimagic
s1=150, s2=5150 (Pfefferman)
6 |
42 |
29 |
3 |
40 |
30 |
8 |
44 |
47 |
21 |
20 |
10 |
33 |
31 |
41 |
37 |
1 |
7 |
19 |
17 |
13 |
9 |
43 |
49 |
36 |
2 |
5 |
35 |
34 |
38 |
48 |
14 |
15 |
45 |
12 |
16 |
|
s1=168, s2=6524 (Boyer)
41 |
35 |
6 |
2 |
37 |
47 |
5 |
42 |
33 |
39 |
46 |
3 |
38 |
7 |
45 |
43 |
1 |
34 |
22 |
55 |
13 |
11 |
49 |
18 |
53 |
10 |
17 |
23 |
14 |
51 |
9 |
19 |
54 |
50 |
21 |
15 |
|
|
Jaroslaw Wroblewski, Bimagic, Associated
s1=408, s2=36826
17 |
36 |
55 |
124 |
62 |
114 |
58 |
40 |
129 |
50 |
111 |
20 |
108 |
135 |
34 |
44 |
38 |
49 |
87 |
98 |
92 |
102 |
1 |
28 |
116 |
25 |
86 |
7 |
96 |
78 |
22 |
74 |
12 |
81 |
100 |
119 |
|
s1=618, s2=86978
1 |
62 |
78 |
138 |
186 |
153 |
94 |
126 |
193 |
25 |
154 |
26 |
124 |
173 |
76 |
184 |
21 |
40 |
166 |
185 |
22 |
130 |
33 |
82 |
180 |
52 |
181 |
13 |
80 |
112 |
53 |
20 |
68 |
128 |
144 |
205 |
|
s1=648, s2=86684
23 |
82 |
151 |
190 |
109 |
93 |
99 |
75 |
135 |
159 |
166 |
14 |
90 |
215 |
102 |
39 |
97 |
105 |
111 |
119 |
177 |
114 |
1 |
126 |
202 |
50 |
57 |
81 |
141 |
117 |
123 |
107 |
26 |
65 |
134 |
193 |
|
s1=714, s2=111074
18 |
48 |
126 |
145 |
204 |
173 |
110 |
161 |
237 |
88 |
92 |
26 |
184 |
101 |
86 |
216 |
14 |
113 |
125 |
224 |
22 |
152 |
137 |
54 |
212 |
146 |
150 |
1 |
77 |
128 |
65 |
34 |
93 |
112 |
190 |
220 |
|
|
|
Lee Morgenstern, Bimagic, Crosswise Symmetric
s1=219, s2=10663
72 |
18 |
17 |
16 |
49 |
47 |
13 |
52 |
36 |
5 |
50 |
63 |
38 |
35 |
7 |
66 |
15 |
58 |
20 |
53 |
34 |
39 |
69 |
4 |
55 |
1 |
57 |
56 |
26 |
24 |
21 |
60 |
68 |
37 |
10 |
23 |
|
Column Symmetric Center Lines
|
|
s1=330, s2=26432
9 |
83 |
105 |
84 |
15 |
34 |
27 |
101 |
26 |
5 |
76 |
95 |
109 |
78 |
28 |
13 |
17 |
85 |
32 |
1 |
97 |
82 |
25 |
93 |
54 |
11 |
67 |
103 |
91 |
4 |
99 |
56 |
7 |
43 |
106 |
19 |
|
|
|