Historical (Partly) Bimagic Squares Order 7
Pfefferman, Partly Bimagic (1891)
4 Bimagic Rows, 4 Bimagic Columns
| 27 |
49 |
17 |
36 |
12 |
30 |
4 |
| 7 |
24 |
43 |
19 |
37 |
11 |
34 |
| 31 |
1 |
26 |
44 |
18 |
41 |
14 |
| 8 |
33 |
2 |
25 |
48 |
21 |
38 |
| 40 |
9 |
32 |
6 |
28 |
45 |
15 |
| 16 |
39 |
13 |
35 |
3 |
22 |
47 |
| 46 |
20 |
42 |
10 |
29 |
5 |
23 |
Christian Boyer/Walter Trump, Nearly Bimagic (2001/2002)
7 Bimagic Rows, 5 Bimagic Columns, 1 Bimagic Diagonal
Christian Boyer (2001)
| 17 |
29 |
11 |
19 |
41 |
49 |
9 |
| 36 |
44 |
7 |
38 |
5 |
25 |
20 |
| 37 |
3 |
34 |
18 |
8 |
33 |
42 |
| 15 |
45 |
30 |
14 |
46 |
13 |
12 |
| 6 |
2 |
43 |
35 |
26 |
31 |
32 |
| 16 |
28 |
40 |
47 |
22 |
1 |
21 |
| 48 |
24 |
10 |
4 |
27 |
23 |
39 |
|
Walter Trump (2002)
| 7 |
39 |
3 |
33 |
43 |
27 |
23 |
| 44 |
18 |
40 |
11 |
5 |
37 |
20 |
| 26 |
31 |
36 |
21 |
9 |
4 |
48 |
| 15 |
49 |
30 |
12 |
25 |
6 |
38 |
| 14 |
2 |
19 |
46 |
41 |
24 |
29 |
| 22 |
28 |
34 |
10 |
35 |
45 |
1 |
| 47 |
8 |
13 |
42 |
17 |
32 |
16 |
|
|
Christian Boyer, Nearly Bimagic (2005)
7 Bimagic Rows, 7 Bimagic Columns, 1 Bimagic Diagonal
s1 = 196, s2 = 7244
| 51 |
8 |
29 |
21 |
26 |
11 |
50 |
| 32 |
10 |
53 |
18 |
33 |
43 |
7 |
| 25 |
34 |
44 |
1 |
41 |
9 |
42 |
| 19 |
39 |
2 |
28 |
54 |
17 |
37 |
| 14 |
47 |
15 |
55 |
12 |
22 |
31 |
| 49 |
13 |
23 |
38 |
3 |
46 |
24 |
| 6 |
45 |
30 |
35 |
27 |
48 |
5 |
|
|
|
Lee Morgenstern, Bimagic (2006)
Crosswise Symmetric, Type 1
Square # 1, s1 = 238, s2 = 10400
| 26 |
50 |
51 |
21 |
19 |
10 |
61 |
| 18 |
42 |
49 |
47 |
17 |
7 |
58 |
| 57 |
41 |
1 |
22 |
54 |
38 |
25 |
| 15 |
53 |
31 |
34 |
37 |
62 |
6 |
| 27 |
11 |
14 |
46 |
67 |
43 |
30 |
| 66 |
39 |
48 |
5 |
24 |
33 |
23 |
| 29 |
2 |
44 |
63 |
20 |
45 |
35 |
|
Square # 2, s1 = 238, s2 = 10616
| 5 |
52 |
60 |
15 |
22 |
37 |
47 |
| 16 |
63 |
46 |
53 |
8 |
21 |
31 |
| 23 |
13 |
48 |
33 |
67 |
44 |
10 |
| 61 |
7 |
41 |
34 |
27 |
56 |
12 |
| 55 |
45 |
1 |
35 |
20 |
58 |
24 |
| 42 |
32 |
25 |
4 |
51 |
19 |
65 |
| 36 |
26 |
17 |
64 |
43 |
3 |
49 |
|
Square # 3, s1 = 238, s2 = 10664
| 1 |
52 |
63 |
44 |
30 |
23 |
25 |
| 16 |
67 |
38 |
24 |
5 |
43 |
45 |
| 54 |
31 |
20 |
49 |
11 |
61 |
12 |
| 29 |
39 |
15 |
34 |
53 |
4 |
64 |
| 37 |
14 |
57 |
19 |
48 |
56 |
7 |
| 41 |
8 |
9 |
65 |
32 |
33 |
50 |
| 60 |
27 |
36 |
3 |
59 |
18 |
35 |
|
Square # 7, s1 = 252, s2 = 11842
| 63 |
47 |
15 |
31 |
58 |
33 |
5 |
| 25 |
9 |
14 |
41 |
57 |
67 |
39 |
| 71 |
45 |
52 |
8 |
18 |
28 |
30 |
| 21 |
51 |
34 |
36 |
38 |
2 |
70 |
| 27 |
1 |
54 |
64 |
20 |
42 |
44 |
| 19 |
46 |
17 |
60 |
6 |
56 |
48 |
| 26 |
53 |
66 |
12 |
55 |
24 |
16 |
|
Square # 8, s1 = 252, s2 = 11980
| 11 |
54 |
49 |
3 |
28 |
50 |
57 |
| 18 |
61 |
44 |
69 |
23 |
15 |
22 |
| 71 |
32 |
26 |
17 |
59 |
10 |
37 |
| 33 |
39 |
70 |
36 |
2 |
19 |
53 |
| 40 |
1 |
13 |
55 |
46 |
35 |
62 |
| 21 |
14 |
43 |
34 |
65 |
63 |
12 |
| 58 |
51 |
7 |
38 |
29 |
60 |
9 |
|
|
Crosswise Symmetric, Type 2
Square # 4, s1 = 238, s2 = 11024
| 5 |
17 |
50 |
20 |
60 |
27 |
59 |
| 51 |
63 |
18 |
8 |
48 |
9 |
41 |
| 53 |
15 |
34 |
65 |
3 |
46 |
22 |
| 7 |
10 |
23 |
54 |
35 |
43 |
66 |
| 58 |
61 |
45 |
33 |
14 |
2 |
25 |
| 40 |
44 |
67 |
11 |
21 |
49 |
6 |
| 24 |
28 |
1 |
47 |
57 |
62 |
19 |
|
Square # 5, s1 = 238, s2 = 11024
| 5 |
17 |
50 |
60 |
20 |
27 |
59 |
| 51 |
63 |
18 |
48 |
8 |
9 |
41 |
| 53 |
15 |
34 |
3 |
65 |
46 |
22 |
| 58 |
61 |
45 |
14 |
33 |
2 |
25 |
| 7 |
10 |
23 |
35 |
54 |
43 |
66 |
| 40 |
44 |
67 |
21 |
11 |
49 |
6 |
| 24 |
28 |
1 |
57 |
47 |
62 |
19 |
|
|
Associated
Square # 6, s1 = 245, s2 = 11483
| 2 |
34 |
61 |
45 |
59 |
14 |
30 |
| 41 |
48 |
64 |
10 |
26 |
5 |
51 |
| 24 |
7 |
21 |
62 |
58 |
53 |
20 |
| 69 |
18 |
32 |
35 |
38 |
52 |
1 |
| 50 |
17 |
12 |
8 |
49 |
63 |
46 |
| 19 |
65 |
44 |
60 |
6 |
22 |
29 |
| 40 |
56 |
11 |
25 |
9 |
36 |
68 |
|
|
|