Office Applications and Entertainment, Magic Squares

Vorige Pagina Attachment 15.8.1 About the Author

Historical (Partly) Bimagic Squares Order 7

Pfefferman, Partly Bimagic (1891)
4 Bimagic Rows, 4 Bimagic Columns

27 49 17 36 12 30 4
7 24 43 19 37 11 34
31 1 26 44 18 41 14
8 33 2 25 48 21 38
40 9 32 6 28 45 15
16 39 13 35 3 22 47
46 20 42 10 29 5 23


Christian Boyer/Walter Trump, Nearly Bimagic (2001/2002)
7 Bimagic Rows, 5 Bimagic Columns, 1 Bimagic Diagonal

Christian Boyer (2001)
17 29 11 19 41 49 9
36 44 7 38 5 25 20
37 3 34 18 8 33 42
15 45 30 14 46 13 12
6 2 43 35 26 31 32
16 28 40 47 22 1 21
48 24 10 4 27 23 39
Walter Trump (2002)
7 39 3 33 43 27 23
44 18 40 11 5 37 20
26 31 36 21 9 4 48
15 49 30 12 25 6 38
14 2 19 46 41 24 29
22 28 34 10 35 45 1
47 8 13 42 17 32 16


Christian Boyer, Nearly Bimagic (2005)
7 Bimagic Rows, 7 Bimagic Columns, 1 Bimagic Diagonal

s1 = 196, s2 = 7244
51 8 29 21 26 11 50
32 10 53 18 33 43 7
25 34 44 1 41 9 42
19 39 2 28 54 17 37
14 47 15 55 12 22 31
49 13 23 38 3 46 24
6 45 30 35 27 48 5


Lee Morgenstern, Bimagic (2006)
Crosswise Symmetric, Type 1

Square # 1, s1 = 238, s2 = 10400
26 50 51 21 19 10 61
18 42 49 47 17 7 58
57 41 1 22 54 38 25
15 53 31 34 37 62 6
27 11 14 46 67 43 30
66 39 48 5 24 33 23
29 2 44 63 20 45 35
Square # 2, s1 = 238, s2 = 10616
5 52 60 15 22 37 47
16 63 46 53 8 21 31
23 13 48 33 67 44 10
61 7 41 34 27 56 12
55 45 1 35 20 58 24
42 32 25 4 51 19 65
36 26 17 64 43 3 49
Square # 3, s1 = 238, s2 = 10664
1 52 63 44 30 23 25
16 67 38 24 5 43 45
54 31 20 49 11 61 12
29 39 15 34 53 4 64
37 14 57 19 48 56 7
41 8 9 65 32 33 50
60 27 36 3 59 18 35
Square # 7, s1 = 252, s2 = 11842
63 47 15 31 58 33 5
25 9 14 41 57 67 39
71 45 52 8 18 28 30
21 51 34 36 38 2 70
27 1 54 64 20 42 44
19 46 17 60 6 56 48
26 53 66 12 55 24 16
Square # 8, s1 = 252, s2 = 11980
11 54 49 3 28 50 57
18 61 44 69 23 15 22
71 32 26 17 59 10 37
33 39 70 36 2 19 53
40 1 13 55 46 35 62
21 14 43 34 65 63 12
58 51 7 38 29 60 9


Crosswise Symmetric, Type 2

Square # 4, s1 = 238, s2 = 11024
5 17 50 20 60 27 59
51 63 18 8 48 9 41
53 15 34 65 3 46 22
7 10 23 54 35 43 66
58 61 45 33 14 2 25
40 44 67 11 21 49 6
24 28 1 47 57 62 19
Square # 5, s1 = 238, s2 = 11024
5 17 50 60 20 27 59
51 63 18 48 8 9 41
53 15 34 3 65 46 22
58 61 45 14 33 2 25
7 10 23 35 54 43 66
40 44 67 21 11 49 6
24 28 1 57 47 62 19


Associated

Square # 6, s1 = 245, s2 = 11483
2 34 61 45 59 14 30
41 48 64 10 26 5 51
24 7 21 62 58 53 20
69 18 32 35 38 52 1
50 17 12 8 49 63 46
19 65 44 60 6 22 29
40 56 11 25 9 36 68

Vorige Pagina About the Author