Construction of Semi Magic Squares (11 x 11)
s11 = 671, Res11 = 61
Because of the extremely high number of possible permutations within the rows of order 11 Generators, a non-iterative procedure has been used for the construction of Semi Magic Squares
(ref. SemiSqrs11).
Unfortunately this results (generally) in Semi Magic Squares for which the last column is non-subtractive.
This can however be corrected with a procedure, which recalculates the last four columns (ref. CnstrSqrs11a),
suitable for Semi Magic Squares with 11 subtractive rows and columns (Res11 = 61), as illustrated below:
Semi Magic, last Column Wrong
1 |
14 |
29 |
43 |
53 |
63 |
77 |
81 |
94 |
112 |
104 |
2 |
12 |
30 |
44 |
54 |
64 |
71 |
83 |
95 |
114 |
102 |
3 |
15 |
32 |
40 |
52 |
57 |
75 |
88 |
89 |
115 |
105 |
31 |
36 |
5 |
13 |
50 |
66 |
87 |
73 |
103 |
96 |
111 |
99 |
62 |
76 |
85 |
100 |
48 |
42 |
113 |
24 |
6 |
16 |
121 |
79 |
108 |
93 |
45 |
69 |
59 |
41 |
18 |
10 |
28 |
120 |
110 |
51 |
78 |
68 |
92 |
58 |
20 |
39 |
27 |
8 |
119 |
107 |
90 |
82 |
34 |
65 |
33 |
47 |
17 |
70 |
7 |
91 |
117 |
109 |
49 |
86 |
26 |
56 |
19 |
72 |
11 |
35 |
80 |
98 |
116 |
106 |
74 |
60 |
46 |
22 |
23 |
9 |
37 |
4 |
21 |
25 |
38 |
55 |
61 |
67 |
84 |
97 |
101 |
118 |
|
Semi Magic Square
1 |
14 |
29 |
43 |
53 |
63 |
77 |
81 |
94 |
112 |
104 |
2 |
12 |
30 |
44 |
54 |
64 |
71 |
83 |
114 |
102 |
95 |
3 |
15 |
32 |
40 |
52 |
57 |
75 |
105 |
89 |
115 |
88 |
31 |
36 |
5 |
13 |
50 |
66 |
87 |
111 |
103 |
73 |
96 |
99 |
62 |
76 |
85 |
100 |
48 |
42 |
113 |
16 |
24 |
6 |
121 |
79 |
108 |
93 |
45 |
69 |
59 |
10 |
18 |
41 |
28 |
120 |
110 |
51 |
78 |
68 |
92 |
58 |
39 |
20 |
27 |
8 |
119 |
107 |
90 |
82 |
34 |
65 |
33 |
17 |
7 |
47 |
70 |
91 |
117 |
109 |
49 |
86 |
26 |
56 |
19 |
72 |
11 |
35 |
80 |
98 |
116 |
106 |
74 |
60 |
46 |
9 |
37 |
22 |
23 |
4 |
21 |
25 |
38 |
55 |
61 |
67 |
84 |
101 |
97 |
118 |
|
Recalculated Columns
81 |
83 |
105 |
111 |
113 |
10 |
39 |
17 |
19 |
9 |
84 |
94 |
114 |
89 |
103 |
16 |
18 |
20 |
7 |
72 |
37 |
101 |
112 |
102 |
115 |
73 |
24 |
41 |
27 |
47 |
11 |
22 |
97 |
104 |
95 |
88 |
96 |
6 |
28 |
8 |
70 |
35 |
23 |
118 |
|
|
The resulting Semi Magic Square shown above, has been used in the construction example of previous page.
Notes
-
Based on a limited collection of 95 Generators, 18 (suitable) Semi Magic Squares could be obtained.
-
Based on the Semi Magic Square shown above (left), 5 sets of 'Recalculated Columns' could be generated.
|