' Constructs Composed Magic Squares of Order 11

' Tested with Office 2007 under Windows 7

```Sub PriemE11()

Dim a1(121), a(64), a11(121), b1(121), b(121), c(64), Crnr3(2)

y = MsgBox("Locked", vbCritical, "Routine PriemE11")
End

n5 = 0: n9 = 0: k1 = 1: k2 = 1

t1 = Timer

For j100 = 2 To 851
Cells(k1, 1).Select: Cells(k1, 1).Value = j100

GoSub 2010                                        'Redefine Integers

'    Read Center Square (3 x 3)

For i1 = 1 To 9
a(i1) = Sheets("Lines3a").Cells(j100, i1).Value
Next i1

'    Store in a11()

a11(49) = a(1): a11(50) = a(2): a11(51) = a(3):
a11(60) = a(4): a11(61) = a(5): a11(62) = a(6):
a11(71) = a(7): a11(72) = a(8): a11(73) = a(9):

n32 = 9: GoSub 900                                'Remove used integers from available integers

'    Complete  Eccentrc Squares A1/2 (5 x 5)

Crnr3(1) = a11(51)                                'Square 1
Crnr3(2) = a11(71)                                'Square 2

i35 = 1
For n10 = 1 To 2

Erase a, b, c
GoSub 5000: If fl1 = 0 Then GoTo 1000

Select Case n10

Case 1:

a11(27) = a(1): a11(28) = a(6): a11(29) = a(9):  a11(30) = a(10): a11(31) = a(11):
a11(38) = a(5): a11(39) = a(2): a11(40) = a(12): a11(41) = a(13): a11(42) = a(14):
a11(52) = a(16): a11(53) = a(15):
a11(63) = a(3):  a11(64) = a(7):
a11(74) = a(8):  a11(75) = a(4):

n32 = 16: GoSub 900                 'Remove used integers from available integers
i35 = 2

Case 2:

a11(47) = a(4):   a11(48) = a(8):
a11(58) = a(7):  a11(59) = a(3):
a11(69) = a(15): a11(70) = a(16):
a11(80) = a(14): a11(81) = a(13): a11(82) = a(12): a11(83) = a(2): a11(84) = a(5):
a11(91) = a(11): a11(92) = a(10): a11(93) = a(9):  a11(94) = a(6): a11(95) = a(1):

n32 = 16: GoSub 900                 'Remove used integers from available integers

End Select

Next n10

'    Complete  Eccentrc Squares B1/2 (7 x 7)

Crnr3(1) = a11(29) + a11(41) + a11(53) ' Square 1
Crnr3(2) = a11(69) + a11(81) + a11(93) ' Square 2

i35 = 1
For n10 = 1 To 2

Erase a, b, c
GoSub 3000: If fl1 = 0 Then GoTo 1000
GoSub 7000: If fl1 = 0 Then GoTo 1000

Select Case n10

Case 1:

a11(5) = a(10):  a11(6) = a(15):  a11(7) = a(18):  a11(8) = a(20):  a11(9) = a(8):  a11(10) = a(9):  a11(11) = a(7):
a11(16) = a(14): a11(17) = a(11): a11(18) = a(19): a11(19) = a(21): a11(20) = a(2): a11(21) = a(3):  a11(22) = a(1):
a11(32) = a(6):  a11(33) = a(4):
a11(43) = a(25): a11(44) = a(24):
a11(54) = a(23): a11(55) = a(22):
a11(65) = a(12): a11(66) = a(16):
a11(76) = a(17): a11(77) = a(13):

n32 = 25: GoSub 900                 'Remove used integers from available integers
i35 = 2

Case 2:

a11(45) = a(13):  a11(46) = a(17):
a11(56) = a(16): a11(57) = a(12):
a11(67) = a(22): a11(68) = a(23):
a11(78) = a(24): a11(79) = a(25):
a11(89) = a(4):  a11(90) = a(6):
a11(100) = a(1):  a11(101) = a(3): a11(102) = a(2): a11(103) = a(21): a11(104) = a(19): a11(105) = a(11): a11(106) = a(14):
a11(111) = a(7):  a11(112) = a(9): a11(113) = a(8): a11(114) = a(20): a11(115) = a(18): a11(116) = a(15): a11(117) = a(10):

n32 = 25: GoSub 900                 'Remove used integers from available integers

End Select

Next n10

'    Generate Pan Magic Squares Pm1/2 ( 4  x 4)
'    Complete Composed Magic Square E (11 x 11)

For n10 = 1 To 2

Erase a, b, c
GoSub 4000: If fl1 = 0 Then GoTo 1000

Select Case n10

Case 1:

a11(1) = a(1):  a11(2) = a(2):  a11(3) = a(3):  a11(4) = a(4):
a11(12) = a(5):  a11(13) = a(6):  a11(14) = a(7):  a11(15) = a(8):
a11(23) = a(9):  a11(24) = a(10): a11(25) = a(11): a11(26) = a(12):
a11(34) = a(13): a11(35) = a(14): a11(36) = a(15): a11(37) = a(16):

n32 = 16: GoSub 900                 'Remove used integers from available integers
i35 = 2

Case 2:

a11(85) = a(1):  a11(86) = a(2):  a11(87) = a(3):  a11(88) = a(4):
a11(96) = a(5):  a11(97) = a(6):  a11(98) = a(7):  a11(99) = a(8):
a11(107) = a(9):  a11(108) = a(10): a11(109) = a(11): a11(110) = a(12):
a11(118) = a(13): a11(119) = a(14): a11(120) = a(15): a11(121) = a(16):

End Select

Next n10

500
GoSub 850                                  'Double Check Identical Integers
If fl1 = 1 Then
n9 = n9 + 1: GoSub 1650                 'Print results (squares)
'               n9 = n9 + 1: GoSub 1640                 'Print results (lines)
End If

1000 Erase b1, b, c
Next j100

t2 = Timer

t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
y = MsgBox(t10, 0, "Routine PriemE11")

End

'       Determine Magic Square Order 3

3000 fl1 = 1

For j9 = m1 To m2                                                     'a(9)
If b1(a1(j9)) = 0 Then GoTo 3090
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 3090
a(9) = a1(j9)

For j8 = m1 To m2                                                     'a(8)
If b1(a1(j8)) = 0 Then GoTo 3080
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 3080
a(8) = a1(j8)

a(7) = s3 - a(8) - a(9):
If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 3070:
If b1(a(7)) = 0 Then GoTo 3070
If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 3070

a(6) = 4 * s3 / 3 - a(8) - 2 * a(9):
If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 3060:
If b1(a(6)) = 0 Then GoTo 3060
If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 3060

a(5) = s3 / 3:

a(4) = -2 * s3 / 3 + a(8) + 2 * a(9):
If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 3040:
If b1(a(4)) = 0 Then GoTo 3040
If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 3040

a(3) = -s3 / 3 + a(8) + a(9):
If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 3030:
If b1(a(3)) = 0 Then GoTo 3030
If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 3030

a(2) = 2 * s3 / 3 - a(8):
If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 3020:
If b1(a(2)) = 0 Then GoTo 3020
If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 3020

a(1) = 2 * s3 / 3 - a(9):
If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 3010:
If b1(a(1)) = 0 Then GoTo 3010
If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 3010

Return

b(c(1)) = 0: c(1) = 0
3010 b(c(2)) = 0: c(2) = 0
3020 b(c(3)) = 0: c(2) = 0
3030 b(c(4)) = 0: c(4) = 0
3040 b(c(5)) = 0: c(5) = 0
3050 b(c(6)) = 0: c(6) = 0
3060 b(c(7)) = 0: c(7) = 0
3070 b(c(8)) = 0: c(8) = 0
3080 Next j8

b(c(9)) = 0: c(9) = 0
3090 Next j9

fl1 = 0

Return

'    Complete  Eccentrc Squares A1/2 (5 x 5)

5000 fl1 = 1

'   Determine Main Diagonal and related pairs

For j1 = m1 To m2
If b1(a1(j1)) = 0 Then GoTo 10
If b(a1(j1)) = 0 Then b(a1(j1)) = a1(j1): c(1) = a1(j1) Else GoTo 10
a(1) = a1(j1)

a(5) = Pr3 - a(1): If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50

For j2 = m1 To m2
If b1(a1(j2)) = 0 Then GoTo 20
If b(a1(j2)) = 0 Then b(a1(j2)) = a1(j2): c(2) = a1(j2) Else GoTo 20
a(2) = a1(j2)

a(6) = Pr3 - a(2): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60

For j3 = m1 To m2
If b1(a1(j3)) = 0 Then GoTo 30
If b(a1(j3)) = 0 Then b(a1(j3)) = a1(j3): c(3) = a1(j3) Else GoTo 30
a(3) = a1(j3)

a(7) = Pr3 - a(3): If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70

a(4) = (s5 - Crnr3(i35)) - a(3) - a(2) - a(1)
If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40:
If b1(a(4)) = 0 Then GoTo 40
If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40

a(8) = Pr3 - a(4): If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 80

'   Determine remainder of the pairs

For j9 = m1 To m2
If b1(a1(j9)) = 0 Then GoTo 90
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 90
a(9) = a1(j9)

a(12) = Pr3 - a(9): If b(a(12)) = 0 Then b(a(12)) = a(12): c(12) = a(12) Else GoTo 120

For j10 = m1 To m2
If b1(a1(j10)) = 0 Then GoTo 100
If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 100
a(10) = a1(j10)

a(14) = Pr3 - a(10): If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 140

a(11) = s5 - a(1) - a(6) - a(9) - a(10)
If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 110:
If b1(a(11)) = 0 Then GoTo 110
If b(a(11)) = 0 Then b(a(11)) = a(11): c(11) = a(11) Else GoTo 110

a(13) = Pr3 - a(11): If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 130

a(15) = s5 - a(4) - a(7) - a(14) - a(11)
If a(15) < a1(m1) Or a(15) > a1(m2) Then GoTo 150:
If b1(a(15)) = 0 Then GoTo 150
If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 150

a(16) = Pr3 - a(15): If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 160

If a(9) + a(13) + a(15) >= 179 Then Return	'Change parameter for more results (149 ... 194)

b(c(16)) = 0: c(16) = 0
160 b(c(15)) = 0: c(15) = 0
150 b(c(13)) = 0: c(13) = 0
130 b(c(11)) = 0: c(11) = 0
110 b(c(14)) = 0: c(14) = 0
140 b(c(10)) = 0: c(10) = 0
100 Next j10

b(c(12)) = 0: c(12) = 0
120 b(c(9)) = 0: c(9) = 0
90 Next j9

b(c(8)) = 0: c(8) = 0
80  b(c(4)) = 0: c(4) = 0
40  b(c(7)) = 0: c(7) = 0
70  b(c(3)) = 0: c(3) = 0
30  Next j3

b(c(6)) = 0: c(6) = 0
60 b(c(2)) = 0: c(2) = 0
20 Next j2

b(c(5)) = 0: c(5) = 0
50 b(c(1)) = 0: c(1) = 0
10 Next j1

fl1 = 0
Return

'    Complete  Eccentrc Squares B1/2 (7 x 7)
'    Main Diagonal and Related Pairs

7000 fl1 = 1

For j10 = m1 To m2
If b1(a1(j10)) = 0 Then GoTo 7100
If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 7100
a(10) = a1(j10)

a(14) = Pr3 - a(10): If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 7140

For j11 = m1 To m2
If b1(a1(j11)) = 0 Then GoTo 7110
If b(a1(j11)) = 0 Then b(a1(j11)) = a1(j11): c(11) = a1(j11) Else GoTo 7110
a(11) = a1(j11)

a(15) = Pr3 - a(11): If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 7150

For j12 = m1 To m2
If b1(a1(j12)) = 0 Then GoTo 7120
If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 7120
a(12) = a1(j12)

a(16) = Pr3 - a(12): If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 7160

a(13) = (s7 - Crnr3(i35)) - a(12) - a(11) - a(10)
If a(13) < a1(m1) Or a(13) > a1(m2) Then GoTo 7130:
If b1(a(13)) = 0 Then GoTo 7130
If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 7130

a(17) = Pr3 - a(13): If b(a(17)) = 0 Then b(a(17)) = a(17): c(17) = a(17) Else GoTo 7170

For j18 = m1 To m2
If b1(a1(j18)) = 0 Then GoTo 7180
If b(a1(j18)) = 0 Then b(a1(j18)) = a1(j18): c(18) = a1(j18) Else GoTo 7180
a(18) = a1(j18)

a(19) = Pr3 - a(18): If b(a(19)) = 0 Then b(a(19)) = a(19): c(19) = a(19) Else GoTo 7190

a(20) = s7 - s3 - a(10) - a(15) - a(18)
If a(20) < a1(m1) Or a(20) > a1(m2) Then GoTo 7200:
If b1(a(20)) = 0 Then GoTo 7200
If b(a(20)) = 0 Then b(a(20)) = a(20): c(20) = a(20) Else GoTo 7200

a(21) = Pr3 - a(20): If b(a(21)) = 0 Then b(a(21)) = a(21): c(21) = a(21) Else GoTo 7210

For j22 = m1 To m2
If b1(a1(j22)) = 0 Then GoTo 7220
If b(a1(j22)) = 0 Then b(a1(j22)) = a1(j22): c(22) = a1(j22) Else GoTo 7220
a(22) = a1(j22)

a(23) = Pr3 - a(22): If b(a(23)) = 0 Then b(a(23)) = a(23): c(23) = a(23) Else GoTo 7230

a(24) = s7 - s3 - a(13) - a(16) - a(22)
If a(24) < a1(m1) Or a(24) > a1(m2) Then GoTo 7240:
If b1(a(24)) = 0 Then GoTo 7240
If b(a(24)) = 0 Then b(a(24)) = a(24): c(24) = a(24) Else GoTo 7240

a(25) = Pr3 - a(24): If b(a(25)) = 0 Then b(a(25)) = a(25): c(25) = a(25) Else GoTo 7250

Return

b(c(25)) = 0: c(25) = 0
7250 b(c(24)) = 0: c(24) = 0
7240 b(c(23)) = 0: c(23) = 0
7230 b(c(22)) = 0: c(22) = 0
7220 Next j22

b(c(21)) = 0: c(21) = 0
7210 b(c(20)) = 0: c(20) = 0
7200 b(c(19)) = 0: c(19) = 0
7190 b(c(18)) = 0: c(18) = 0
7180 Next j18

b(c(17)) = 0: c(17) = 0
7170 b(c(13)) = 0: c(13) = 0
7130 b(c(16)) = 0: c(16) = 0
7160 b(c(12)) = 0: c(12) = 0
7120 Next j12

b(c(15)) = 0: c(15) = 0
7150 b(c(11)) = 0: c(11) = 0
7110 Next j11

b(c(14)) = 0: c(14) = 0
7140 b(c(10)) = 0: c(10) = 0
7100 Next j10

fl1 = 0
Return

'    Generate Pan Magic Squares Pm1/2 (4 x 4)

4000 fl1 = 1

For j16 = m1 To m2                                          'a(16)
If b1(a1(j16)) = 0 Then GoTo 4160
If b(a1(j16)) = 0 Then b(a1(j16)) = a1(j16): c(16) = a1(j16) Else GoTo 4160
a(16) = a1(j16)

For j15 = m1 To m2                                          'a(15)
If b1(a1(j15)) = 0 Then GoTo 4150
If b(a1(j15)) = 0 Then b(a1(j15)) = a1(j15): c(15) = a1(j15) Else GoTo 4150
a(15) = a1(j15)

For j14 = m1 To m2                                          'a(14)
If b1(a1(j14)) = 0 Then GoTo 4140
If b(a1(j14)) = 0 Then b(a1(j14)) = a1(j14): c(14) = a1(j14) Else GoTo 4140
a(14) = a1(j14)

a(13) = s4 - a(14) - a(15) - a(16)
If a(13) < a1(m1) Or a(13) > a1(m2) Then GoTo 4130
If b1(a(13)) = 0 Then GoTo 4130
If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 4130

For j12 = m1 To m2                                          'a(12)
If b1(a1(j12)) = 0 Then GoTo 4120
If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 4120
a(12) = a1(j12)

a(11) = s4 - a(12) - a(15) - a(16)
If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 4070
If b1(a(11)) = 0 Then GoTo 4070

a(10) = a(12) - a(14) + a(16)
If a(10) < a1(m1) Or a(10) > a1(m2) Then GoTo 4070
If b1(a(10)) = 0 Then GoTo 4070

a(9) = -a(12) + a(14) + a(15)
If a(9) < a1(m1) Or a(9) > a1(m2) Then GoTo 4070
If b1(a(9)) = 0 Then GoTo 4070

a(8) = 0.5 * s4 - a(14)
If a(8) < a1(m1) Or a(8) > a1(m2) Then GoTo 4070
If b1(a(8)) = 0 Then GoTo 4070

a(7) = -0.5 * s4 + a(14) + a(15) + a(16)
If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 4070:
If b1(a(7)) = 0 Then GoTo 4070

a(6) = 0.5 * s4 - a(16)
If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 4070:
If b1(a(6)) = 0 Then GoTo 4070

a(5) = 0.5 * s4 - a(15)
If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 4070:
If b1(a(5)) = 0 Then GoTo 4070

a(4) = 0.5 * s4 - a(12) + a(14) - a(16)
If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 4070:
If b1(a(4)) = 0 Then GoTo 4070

a(3) = 0.5 * s4 + a(12) - a(14) - a(15)
If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 4070:
If b1(a(3)) = 0 Then GoTo 4070

a(2) = 0.5 * s4 - a(12)
If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 4070:
If b1(a(2)) = 0 Then GoTo 4070

a(1) = -0.5 * s4 + a(12) + a(15) + a(16)
If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 4070:
If b1(a(1)) = 0 Then GoTo 4070

'                 Exclude solutions with identical numbers (PM4)

n32 = 16: GoSub 800: If fl1 = 0 Then GoTo 4070

Return

4070 b(c(12)) = 0: c(12) = 0
4120 Next j12

b(c(13)) = 0: c(13) = 0
4130 b(c(14)) = 0: c(14) = 0
4140 Next j14
b(c(15)) = 0: c(15) = 0
4150 Next j15
b(c(16)) = 0: c(16) = 0
4160 Next j16

fl1 = 0
Return

'   Check Identical Numbers a()

800 fl1 = 1
For i1 = 1 To n32
a20 = a(i1)
For i2 = (1 + i1) To n32
If a20 = a(i2) Then fl1 = 0: Return
Next i2
Next i1
Return

'   Double Check Identical Numbers a11()

850 fl1 = 1
For i1 = 1 To 121
a20 = a11(i1): If a20 = 0 Then GoTo 860
For i2 = (1 + i1) To 121
If a20 = a11(i2) Then fl1 = 0: Return
Next i2
860 Next i1
Return

'   Remove used pairs from b1()

900 For i1 = 1 To n32
b1(a(i1)) = 0
Next i1
Return

'    Print results (lines)

1640 Cells(n9, 226).Select
For i1 = 1 To 225
Cells(n9, i1).Value = a11(i1)
Next i1
Cells(n9, 226).Value = s15
Cells(n9, 227).Value = j100
Return

'    Print results (squares)

1650 n2 = n2 + 1
If n2 = 4 Then
n2 = 1: k1 = k1 + 12: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 12
End If

Cells(k1, k2 + 1).Select
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = j100

i3 = 0
For i1 = 1 To 11
For i2 = 1 To 11
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a11(i3)
Next i2
Next i1

Return

'    Define integer

2010 Pr3 = 122:  Cntr3 = 61: nVar = 121

s3 = 3 * Cntr3                                'MC3
s4 = 4 * Cntr3                                'MC4
s5 = 5 * Cntr3                                'MC5
s7 = 7 * Cntr3                                'MC7
s11 = 11 * Cntr3                              'MC11
s15 = 15 * Cntr3                              'MC15

Erase b1
For i1 = 1 To nVar
a1(i1) = i1: b1(i1) = i1
Next i1
m1 = 1: m2 = nVar

Return

End Sub
```