Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Attachment 14.8.1b About the Author

Construction of Prime Number Magic Squares:

Pan Magic Square (4 x 4)


A1, (MC = 100)
7 1 49 43
43 49 1 7
1 7 43 49
49 43 7 1
B1, (MC = 140)
60 10 40 30
40 30 60 10
30 40 10 60
10 60 30 40
C, (MC = 240)
67 11 89 73
83 79 61 17
31 47 53 109
59 103 37 41


Requirements Pan Magic Squares:

Ultra Magic Square (5 x 5)

A1, (MC = 2250)
900 450 0 840 60
0 840 60 900 450
60 900 450 0 840
450 0 840 60 900
840 60 900 450 0
B1, (MC = 1255)
461 41 389 251 113
251 113 461 41 389
41 389 251 113 461
113 461 41 389 251
389 251 113 461 41
C, (MC = 3505)
1361 491 389 1091 173
251 953 521 941 839
101 1289 701 113 1301
563 461 881 449 1151
1229 311 1013 911 41


Requirements Ultra Magic Squares:

Magic Square (6 x 6)

General Scheme:


A1
a1 a6 a6 a6 a1 a1
a5 a2 a5 a2 a2 a5
a3 a4 a3 a3 a4 a4
a4 a3 a4 a4 a3 a3
a2 a5 a2 a5 a5 a2
a6 a1 a1 a1 a6 a6
B1
b6 b2 b4 b3 b5 b1
b1 b5 b3 b4 b2 b6
b1 b2 b4 b3 b5 b6
b1 b5 b4 b3 b2 b6
b6 b5 b3 b4 b2 b1
b6 b2 b3 b4 b5 b1
C
a1 + b6 a6 + b2 a6 + b4 a6 + b3 a1 + b5 a1 + b1
a5 + b1 a2 + b5 a5 + b3 a2 + b4 a2 + b2 a5 + b6
a3 + b1 a4 + b2 a3 + b4 a3 + b3 a4 + b5 a4 + b6
a4 + b1 a3 + b5 a4 + b4 a4 + b3 a3 + b2 a3 + b6
a2 + b6 a5 + b5 a2 + b3 a5 + b4 a5 + b2 a2 + b1
a6 + b6 a1 + b2 a1 + b3 a1 + b4 a6 + b5 a6 + b1


Balanced series {ai, i = 1 ... 6} and {bj, j = 1 ... 6} will definitively return 6th order Magic Squares
- with Symmetrical Main Diagonals - when applied on Squares A1 and B1.


Example Prime Numbers

A1, (MC = 4500)
47 1453 1453 1453 47 47
1321 179 1321 179 179 1321
199 1301 199 199 1301 1301
1301 199 1301 1301 199 199
179 1321 179 1321 1321 179
1453 47 47 47 1453 1453
B1, (MC = 3150)
1050 210 630 420 840 0
0 840 420 630 210 1050
0 210 630 420 840 1050
0 840 630 420 210 1050
1050 840 420 630 210 0
1050 210 420 630 840 0
C, (MC = 7650)
1097 1663 2083 1873 887 47
1321 1019 1741 809 389 2371
199 1511 829 619 2141 2351
1301 1039 1931 1721 409 1249
1229 2161 599 1951 1531 179
2503 257 467 677 2293 1453


Ultra Magic Square (7 x 7)

A1, (MC = 54271)
5857 9649 6793 7717 7753 7789 8713
7789 8713 5857 9649 6793 7717 7753
7717 7753 7789 8713 5857 9649 6793
9649 6793 7717 7753 7789 8713 5857
8713 5857 9649 6793 7717 7753 7789
7753 7789 8713 5857 9649 6793 7717
6793 7717 7753 7789 8713 5857 9649
B1, (MC = 127050)
0 24780 11520 36300 30330 18150 5970
36300 30330 18150 5970 0 24780 11520
5970 0 24780 11520 36300 30330 18150
11520 36300 30330 18150 5970 0 24780
18150 5970 0 24780 11520 36300 30330
24780 11520 36300 30330 18150 5970 0
30330 18150 5970 0 24780 11520 36300
C, (MC = 181321)
5857 34429 18313 44017 38083 25939 14683
44089 39043 24007 15619 6793 32497 19273
13687 7753 32569 20233 42157 39979 24943
21169 43093 38047 25903 13759 8713 30637
26863 11827 9649 31573 19237 44053 38119
32533 19309 45013 36187 27799 12763 7717
37123 25867 13723 7789 33493 17377 45949


Requirements Ultra Magic Squares:


Most Perfect Pan Magic Square (8 x 8)

A1, (MC = 19248)
19 83 1019 1583 4793 4729 3793 3229
4793 4729 3793 3229 19 83 1019 1583
19 83 1019 1583 4793 4729 3793 3229
4793 4729 3793 3229 19 83 1019 1583
19 83 1019 1583 4793 4729 3793 3229
4793 4729 3793 3229 19 83 1019 1583
19 83 1019 1583 4793 4729 3793 3229
4793 4729 3793 3229 19 83 1019 1583
B1, (MC = 4776)
0 1194 0 1194 0 1194 0 1194
84 1110 84 1110 84 1110 84 1110
480 714 480 714 480 714 480 714
504 690 504 690 504 690 504 690
1194 0 1194 0 1194 0 1194 0
1110 84 1110 84 1110 84 1110 84
714 480 714 480 714 480 714 480
690 504 690 504 690 504 690 504
C, (MC = 24024)
19 1277 1019 2777 4793 5923 3793 4423
4877 5839 3877 4339 103 1193 1103 2693
499 797 1499 2297 5273 5443 4273 3943
5297 5419 4297 3919 523 773 1523 2273
1213 83 2213 1583 5987 4729 4987 3229
5903 4813 4903 3313 1129 167 2129 1667
733 563 1733 2063 5507 5209 4507 3709
5483 5233 4483 3733 709 587 1709 2087


Requirements Most Perfect Pan Magic Squares:


Vorige Pagina Volgende Pagina About the Author