Construction of Prime Number Magic Squares:
Pan Magic Square (4 x 4)
A1, (MC = 100)
7 |
1 |
49 |
43 |
43 |
49 |
1 |
7 |
1 |
7 |
43 |
49 |
49 |
43 |
7 |
1 |
|
B1, (MC = 140)
60 |
10 |
40 |
30 |
40 |
30 |
60 |
10 |
30 |
40 |
10 |
60 |
10 |
60 |
30 |
40 |
|
C, (MC = 240)
67 |
11 |
89 |
73 |
83 |
79 |
61 |
17 |
31 |
47 |
53 |
109 |
59 |
103 |
37 |
41 |
|
|
Requirements Pan Magic Squares:
-
The series {ai, i = 1 ... 4} and {bj, j = 1 ... 4} should be balanced:
a1 + a4 = a2 + a3
and b1 + b4 = b2 + b3;
-
The Latin Squares A1 and B1 should be Pan Magic, which condition is met by the symmetry applied above:
A1: top pairs are identical to bottom pairs;
B1: left pairs are identical to right pairs.
Ultra Magic Square (5 x 5)
A1, (MC = 2250)
900 |
450 |
0 |
840 |
60 |
0 |
840 |
60 |
900 |
450 |
60 |
900 |
450 |
0 |
840 |
450 |
0 |
840 |
60 |
900 |
840 |
60 |
900 |
450 |
0 |
|
B1, (MC = 1255)
461 |
41 |
389 |
251 |
113 |
251 |
113 |
461 |
41 |
389 |
41 |
389 |
251 |
113 |
461 |
113 |
461 |
41 |
389 |
251 |
389 |
251 |
113 |
461 |
41 |
|
C, (MC = 3505)
1361 |
491 |
389 |
1091 |
173 |
251 |
953 |
521 |
941 |
839 |
101 |
1289 |
701 |
113 |
1301 |
563 |
461 |
881 |
449 |
1151 |
1229 |
311 |
1013 |
911 |
41 |
|
|
Requirements Ultra Magic Squares:
-
The series {ai, i = 1 ... 5} and {bj, j = 1 ... 5} should be balanced:
a1 + a5 = a2 + a4
= 2 * a3
and
b1 + b5 = b2 + b4 = 2 * b3;
-
The Latin Pan Magic Squares A1 and B1 should be Associated, which condition is applied above:
A1: center element a3;
B1: center element b3.
Magic Square (6 x 6)
General Scheme:
A1
a1 |
a6 |
a6 |
a6 |
a1 |
a1 |
a5 |
a2 |
a5 |
a2 |
a2 |
a5 |
a3 |
a4 |
a3 |
a3 |
a4 |
a4 |
a4 |
a3 |
a4 |
a4 |
a3 |
a3 |
a2 |
a5 |
a2 |
a5 |
a5 |
a2 |
a6 |
a1 |
a1 |
a1 |
a6 |
a6 |
|
B1
b6 |
b2 |
b4 |
b3 |
b5 |
b1 |
b1 |
b5 |
b3 |
b4 |
b2 |
b6 |
b1 |
b2 |
b4 |
b3 |
b5 |
b6 |
b1 |
b5 |
b4 |
b3 |
b2 |
b6 |
b6 |
b5 |
b3 |
b4 |
b2 |
b1 |
b6 |
b2 |
b3 |
b4 |
b5 |
b1 |
|
C
a1 + b6 |
a6 + b2 |
a6 + b4 |
a6 + b3 |
a1 + b5 |
a1 + b1 |
a5 + b1 |
a2 + b5 |
a5 + b3 |
a2 + b4 |
a2 + b2 |
a5 + b6 |
a3 + b1 |
a4 + b2 |
a3 + b4 |
a3 + b3 |
a4 + b5 |
a4 + b6 |
a4 + b1 |
a3 + b5 |
a4 + b4 |
a4 + b3 |
a3 + b2 |
a3 + b6 |
a2 + b6 |
a5 + b5 |
a2 + b3 |
a5 + b4 |
a5 + b2 |
a2 + b1 |
a6 + b6 |
a1 + b2 |
a1 + b3 |
a1 + b4 |
a6 + b5 |
a6 + b1 |
|
Balanced series {ai, i = 1 ... 6} and {bj, j = 1 ... 6} will definitively return 6th order Magic Squares
- with Symmetrical Main Diagonals - when applied on Squares A1 and B1.
Example Prime Numbers
A1, (MC = 4500)
47 |
1453 |
1453 |
1453 |
47 |
47 |
1321 |
179 |
1321 |
179 |
179 |
1321 |
199 |
1301 |
199 |
199 |
1301 |
1301 |
1301 |
199 |
1301 |
1301 |
199 |
199 |
179 |
1321 |
179 |
1321 |
1321 |
179 |
1453 |
47 |
47 |
47 |
1453 |
1453 |
|
B1, (MC = 3150)
1050 |
210 |
630 |
420 |
840 |
0 |
0 |
840 |
420 |
630 |
210 |
1050 |
0 |
210 |
630 |
420 |
840 |
1050 |
0 |
840 |
630 |
420 |
210 |
1050 |
1050 |
840 |
420 |
630 |
210 |
0 |
1050 |
210 |
420 |
630 |
840 |
0 |
|
C, (MC = 7650)
1097 |
1663 |
2083 |
1873 |
887 |
47 |
1321 |
1019 |
1741 |
809 |
389 |
2371 |
199 |
1511 |
829 |
619 |
2141 |
2351 |
1301 |
1039 |
1931 |
1721 |
409 |
1249 |
1229 |
2161 |
599 |
1951 |
1531 |
179 |
2503 |
257 |
467 |
677 |
2293 |
1453 |
|
Ultra Magic Square (7 x 7)
A1, (MC = 54271)
5857 |
9649 |
6793 |
7717 |
7753 |
7789 |
8713 |
7789 |
8713 |
5857 |
9649 |
6793 |
7717 |
7753 |
7717 |
7753 |
7789 |
8713 |
5857 |
9649 |
6793 |
9649 |
6793 |
7717 |
7753 |
7789 |
8713 |
5857 |
8713 |
5857 |
9649 |
6793 |
7717 |
7753 |
7789 |
7753 |
7789 |
8713 |
5857 |
9649 |
6793 |
7717 |
6793 |
7717 |
7753 |
7789 |
8713 |
5857 |
9649 |
|
B1, (MC = 127050)
0 |
24780 |
11520 |
36300 |
30330 |
18150 |
5970 |
36300 |
30330 |
18150 |
5970 |
0 |
24780 |
11520 |
5970 |
0 |
24780 |
11520 |
36300 |
30330 |
18150 |
11520 |
36300 |
30330 |
18150 |
5970 |
0 |
24780 |
18150 |
5970 |
0 |
24780 |
11520 |
36300 |
30330 |
24780 |
11520 |
36300 |
30330 |
18150 |
5970 |
0 |
30330 |
18150 |
5970 |
0 |
24780 |
11520 |
36300 |
|
C, (MC = 181321)
5857 |
34429 |
18313 |
44017 |
38083 |
25939 |
14683 |
44089 |
39043 |
24007 |
15619 |
6793 |
32497 |
19273 |
13687 |
7753 |
32569 |
20233 |
42157 |
39979 |
24943 |
21169 |
43093 |
38047 |
25903 |
13759 |
8713 |
30637 |
26863 |
11827 |
9649 |
31573 |
19237 |
44053 |
38119 |
32533 |
19309 |
45013 |
36187 |
27799 |
12763 |
7717 |
37123 |
25867 |
13723 |
7789 |
33493 |
17377 |
45949 |
|
Requirements Ultra Magic Squares:
-
The series {ai, i = 1 ... 7} and {bj, j = 1 ... 7} should be balanced:
a1 + a7 =
a2 + a6 =
a3 + a5 =
2 * a4
and
b1 + b7 =
b2 + b6 =
b3 + b5 =
2 * b4
-
The Latin Pan Magic Squares A1 and B1 should be Associated, which condition is applied above:
A1: center element a4;
B1: center element b4.
Most Perfect Pan Magic Square (8 x 8)
A1, (MC = 19248)
19 |
83 |
1019 |
1583 |
4793 |
4729 |
3793 |
3229 |
4793 |
4729 |
3793 |
3229 |
19 |
83 |
1019 |
1583 |
19 |
83 |
1019 |
1583 |
4793 |
4729 |
3793 |
3229 |
4793 |
4729 |
3793 |
3229 |
19 |
83 |
1019 |
1583 |
19 |
83 |
1019 |
1583 |
4793 |
4729 |
3793 |
3229 |
4793 |
4729 |
3793 |
3229 |
19 |
83 |
1019 |
1583 |
19 |
83 |
1019 |
1583 |
4793 |
4729 |
3793 |
3229 |
4793 |
4729 |
3793 |
3229 |
19 |
83 |
1019 |
1583 |
|
B1, (MC = 4776)
0 |
1194 |
0 |
1194 |
0 |
1194 |
0 |
1194 |
84 |
1110 |
84 |
1110 |
84 |
1110 |
84 |
1110 |
480 |
714 |
480 |
714 |
480 |
714 |
480 |
714 |
504 |
690 |
504 |
690 |
504 |
690 |
504 |
690 |
1194 |
0 |
1194 |
0 |
1194 |
0 |
1194 |
0 |
1110 |
84 |
1110 |
84 |
1110 |
84 |
1110 |
84 |
714 |
480 |
714 |
480 |
714 |
480 |
714 |
480 |
690 |
504 |
690 |
504 |
690 |
504 |
690 |
504 |
|
C, (MC = 24024)
19 |
1277 |
1019 |
2777 |
4793 |
5923 |
3793 |
4423 |
4877 |
5839 |
3877 |
4339 |
103 |
1193 |
1103 |
2693 |
499 |
797 |
1499 |
2297 |
5273 |
5443 |
4273 |
3943 |
5297 |
5419 |
4297 |
3919 |
523 |
773 |
1523 |
2273 |
1213 |
83 |
2213 |
1583 |
5987 |
4729 |
4987 |
3229 |
5903 |
4813 |
4903 |
3313 |
1129 |
167 |
2129 |
1667 |
733 |
563 |
1733 |
2063 |
5507 |
5209 |
4507 |
3709 |
5483 |
5233 |
4483 |
3733 |
709 |
587 |
1709 |
2087 |
|
|
Requirements Most Perfect Pan Magic Squares:
-
The series {ai, i = 1 ... 8} and {bj, j = 1 ... 8} should be balanced:
a1 + a8 =
a2 + a7 =
a3 + a6 =
a4 + a5
and
b1 + b8 =
b2 + b7 =
b3 + b6 =
b4 + b5;
-
The orientation of Square B1 should be 90o rotated compared with Square A1.