Office Applications and Entertainment, Magic Squares |
||
Attachment 16.3.1 | About the Author |
Construction of Prime Number Magic Squares:
André Gérardin, Magic Square (4 x 4)
A1, MC = 52
3 5 7 37 37 7 5 3 5 3 37 7 7 37 3 5 B1, MC = 120
2 8 52 58 52 58 2 8 58 52 8 2 8 2 58 52 A2, MC = 1452
9 25 49 1369 1369 49 25 9 25 9 1369 49 49 1369 9 25 B2, MC = 6136
4 64 2704 3364 2704 3364 4 64 3364 2704 64 4 64 4 3364 2704 C2, MC = 7588
13 89 2753 4733 4073 3413 29 73 3389 2713 1433 53 113 1373 3373 2729
A1, MC = 194
4 6 16 74 94 16 74 94 4 6 94 4 6 16 74 6 16 74 94 4 74 94 4 6 16 B1, MC = 151
1 5 25 29 91 29 91 1 5 25 5 25 29 91 1 91 1 5 25 29 25 29 91 1 5 A2, MC = 14620
16 36 256 5476 8836 256 5476 8836 16 36 8836 16 36 256 5476 36 256 5476 8836 16 5476 8836 16 36 256 B2, MC = 9773
1 25 625 841 8281 841 8281 1 25 625 25 625 841 8281 1 8281 1 25 625 841 625 841 8281 1 25 C2, MC = 24393
17 61 881 6317 17117 1097 13757 8837 41 661 8861 641 877 8537 5477 8317 257 5501 9461 857 6101 9677 8297 37 281
A1, MC = 1673
1 11 41 349 391 431 449 41 349 391 431 449 1 11 391 431 449 1 11 41 349 449 1 11 41 349 391 431 11 41 349 391 431 449 1 349 391 431 449 1 11 41 431 449 1 11 41 349 391 B1, MC = 718
14 20 26 54 84 90 430 90 430 14 20 26 54 84 54 84 90 430 14 20 26 20 26 54 84 90 430 14 430 14 20 26 54 84 90 84 90 430 14 20 26 54 26 54 84 90 430 14 20 A2, MC = 663847
1 121 1681 121801 152881 185761 201601 1681 121801 152881 185761 201601 1 121 152881 185761 201601 1 121 1681 121801 201601 1 121 1681 121801 152881 185761 121 1681 121801 152881 185761 201601 1 121801 152881 185761 201601 1 121 1681 185761 201601 1 121 1681 121801 152881 B2, MC = 204244
196 400 676 2916 7056 8100 184900 8100 184900 196 400 676 2916 7056 2916 7056 8100 184900 196 400 676 400 676 2916 7056 8100 184900 196 184900 196 400 676 2916 7056 8100 7056 8100 184900 196 400 676 2916 676 2916 7056 8100 184900 196 400 C2, MC = 868091
197 521 2357 124717 159937 193861 386501 9781 306701 153077 186161 202277 2917 7177 155797 192817 209701 184901 317 2081 122477 202001 677 3037 8737 129901 337781 185957 185021 1877 122201 153557 188677 208657 8101 128857 160981 370661 201797 401 797 4597 186437 204517 7057 8221 186581 121997 153281
A1, MC = 1472
20 34 54 150 174 190 306 544 174 190 306 544 20 34 54 150 150 54 34 20 544 306 190 174 544 306 190 174 150 54 34 20 306 544 174 190 54 150 20 34 54 150 20 34 306 544 174 190 190 174 544 306 34 20 150 54 34 20 150 54 190 174 544 306 B1, MC = 2270
41 59 91 109 371 449 479 671 91 109 41 59 479 671 371 449 371 449 479 671 41 59 91 109 479 671 371 449 91 109 41 59 449 371 671 479 59 41 109 91 671 479 449 371 109 91 59 41 59 41 109 91 449 371 671 479 109 91 59 41 671 479 449 371 A2, MC = 482920
400 1156 2916 22500 30276 36100 93636 295936 30276 36100 93636 295936 400 1156 2916 22500 22500 2916 1156 400 295936 93636 36100 30276 295936 93636 36100 30276 22500 2916 1156 400 93636 295936 30276 36100 2916 22500 400 1156 2916 22500 400 1156 93636 295936 30276 36100 36100 30276 295936 93636 1156 400 22500 2916 1156 400 22500 2916 36100 30276 295936 93636 B2, MC = 1044248
1681 3481 8281 11881 137641 201601 229441 450241 8281 11881 1681 3481 229441 450241 137641 201601 137641 201601 229441 450241 1681 3481 8281 11881 229441 450241 137641 201601 8281 11881 1681 3481 201601 137641 450241 229441 3481 1681 11881 8281 450241 229441 201601 137641 11881 8281 3481 1681 3481 1681 11881 8281 201601 137641 450241 229441 11881 8281 3481 1681 450241 229441 201601 137641 C 2, MC = 1527168
2081 4637 11197 34381 167917 237701 323077 746177 38557 47981 95317 299417 229841 451397 140557 224101 160141 204517 230597 450641 297617 97117 44381 42157 525377 543877 173741 231877 30781 14797 2837 3881 295237 433577 480517 265541 6397 24181 12281 9437 453157 251941 202001 138797 105517 304217 33757 37781 39581 31957 307817 101917 202757 138041 472741 232357 13037 8681 25981 4597 486341 259717 497537 231277
About the Author |