' Generates order 5 Magic Squares with Diamond Inlay, Prime Numbers
' Potential Square Inlays
' Tested with Office 365 under Windows 10
Sub Prime1325b()
Dim a1(100), a(49), b1(1500), b(1500), c(49)
y = MsgBox("Locked", vbCritical, "Routine Prime1325b")
End
n2 = 0: n3 = 0: n9 = 0: n10 = 0: k1 = 1: k2 = 1
' ShtNm1 = "Pairs4507" 'Consecutive Prime Numers { 67 ... 797}
ShtNm1 = "Pairs9823" 'Consecutive Prime Numers {487 ... 1303}
Sheets("Klad1").Select
t1 = Timer
For j100 = 88 To 566 '368 = Regular Pairs
' Define variables
p2 = Sheets(ShtNm1).Cells(j100, 1).Value
s1 = 7 * p2 / 2
Chk5 = Sheets(ShtNm1).Cells(j100, 3).Value
If Chk5 = 1 Then GoTo 500 'Chk5 <> 1 Center
'Chk5 = 1 No Center
nVar1 = Sheets(ShtNm1).Cells(j100, 9).Value
If nVar1 < 25 Then GoTo 500
For i1 = 1 To nVar1
a1(i1) = Sheets(ShtNm1).Cells(j100, 9 + i1).Value
Next i1
m1 = 1: m2 = nVar1
Erase b1
For i1 = m1 To m2
b1(a1(i1)) = a1(i1)
Next i1
' Generate Border
If Chk5 = 1 Then 'Block Center Element if Applicable
a(25) = s1 / 7: b(a(13)) = a(13)
End If
For j49 = m2 To m1 Step -1 'a(49)
If b(a1(j49)) = 0 Then b(a1(j49)) = a1(j49): c(49) = a1(j49) Else GoTo 490
a(49) = a1(j49)
a(1) = p2 - a(49): If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
For j43 = j49 - 1 To m1 Step -1 'a(43)
If b(a1(j43)) = 0 Then b(a1(j43)) = a1(j43): c(43) = a1(j43) Else GoTo 430
a(43) = a1(j43)
a(7) = p2 - a(43):
If a(7) > a(43) Then GoTo 70
If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
For j48 = m2 To m1 Step -1 'a(48)
If b(a1(j48)) = 0 Then b(a1(j48)) = a1(j48): c(48) = a1(j48) Else GoTo 480
a(48) = a1(j48)
a(6) = p2 - a(48): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60
For j47 = j48 - 1 To m1 Step -1 'a(47)
If b(a1(j47)) = 0 Then b(a1(j47)) = a1(j47): c(47) = a1(j47) Else GoTo 470
a(47) = a1(j47)
a(5) = p2 - a(47): If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
For j46 = j47 - 1 To m1 Step -1 'a(46)
If b(a1(j46)) = 0 Then b(a1(j46)) = a1(j46): c(46) = a1(j46) Else GoTo 460
a(46) = a1(j46)
a(4) = p2 - a(46): If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
For j45 = j46 - 1 To m1 Step -1 'a(45)
If b(a1(j45)) = 0 Then b(a1(j45)) = a1(j45): c(45) = a1(j45) Else GoTo 450
a(45) = a1(j45)
a(3) = p2 - a(45): If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
a(44) = s1 - a(43) - a(45) - a(46) - a(47) - a(48) - a(49)
If a(44) < a1(m1) Or a(44) > a1(m2) Then GoTo 440
If b1(a(44)) = 0 Then GoTo 440
If a(44) > a(45) Then GoTo 440
If b(a(44)) = 0 Then b(a(44)) = a(44): c(44) = a(44) Else GoTo 440
a(2) = p2 - a(44): If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
For j42 = m2 To m1 Step -1 'a(42)
If b(a1(j42)) = 0 Then b(a1(j42)) = a1(j42): c(42) = a1(j42) Else GoTo 420
a(42) = a1(j42)
a(36) = p2 - a(42): If b(a(36)) = 0 Then b(a(36)) = a(36): c(36) = a(36) Else GoTo 360
For j35 = j42 - 1 To m1 Step -1 'a(35)
If b(a1(j35)) = 0 Then b(a1(j35)) = a1(j35): c(35) = a1(j35) Else GoTo 350
a(35) = a1(j35)
a(29) = p2 - a(35): If b(a(29)) = 0 Then b(a(29)) = a(29): c(29) = a(29) Else GoTo 290
For j28 = j35 - 1 To m1 Step -1 'a(28)
If b(a1(j28)) = 0 Then b(a1(j28)) = a1(j28): c(28) = a1(j28) Else GoTo 280
a(28) = a1(j28)
a(22) = p2 - a(28): If b(a(22)) = 0 Then b(a(22)) = a(22): c(22) = a(22) Else GoTo 220
For j21 = j28 - 1 To m1 Step -1 'a(21)
If b(a1(j21)) = 0 Then b(a1(j21)) = a1(j21): c(21) = a1(j21) Else GoTo 210
a(21) = a1(j21)
a(15) = p2 - a(21): If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 150
a(14) = s1 - a(7) - a(21) - a(28) - a(35) - a(42) - a(49)
If a(14) < a1(m1) Or a(14) > a1(m2) Then GoTo 140
If b1(a(14)) = 0 Then GoTo 140
If a(14) > a(21) Then GoTo 140
If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 140
a(8) = p2 - a(14): If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 80
' Exclude solutions with identical numbers (Back Check)
' GoSub 800: If fl1 = 0 Then GoTo 5
' n9 = n9 + 1: GoSub 640 'Print results (selected numbers)
n9 = n9 + 1: GoSub 650 'Print results (squares)
Erase b, c: GoTo 500 'Print only first square
5
b(c(8)) = 0: c(8) = 0
80 b(c(14)) = 0: c(14) = 0
140 b(c(15)) = 0: c(15) = 0
150 b(c(21)) = 0: c(21) = 0
210 Next j21
b(c(22)) = 0: c(22) = 0
220 b(c(28)) = 0: c(28) = 0
280 Next j28
b(c(29)) = 0: c(29) = 0
290 b(c(35)) = 0: c(35) = 0
350 Next j35
b(c(36)) = 0: c(36) = 0
360 b(c(42)) = 0: c(42) = 0
420 Next j42
b(c(2)) = 0: c(2) = 0
20 b(c(44)) = 0: c(44) = 0
440 b(c(3)) = 0: c(3) = 0
30 b(c(45)) = 0: c(45) = 0
450 Next j45
b(c(4)) = 0: c(4) = 0
40 b(c(46)) = 0: c(46) = 0
460 Next j46
b(c(5)) = 0: c(5) = 0
50 b(c(47)) = 0: c(47) = 0
470 Next j47
b(c(6)) = 0: c(6) = 0
60 b(c(48)) = 0: c(48) = 0
480 Next j48
b(c(7)) = 0: c(7) = 0
70 b(c(43)) = 0: c(43) = 0
430 Next j43
b(c(1)) = 0: c(1) = 0
10 b(c(49)) = 0: c(49) = 0
490 Next j49
Erase b, c
500 Next j100
t2 = Timer
t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions for sum" + Str(s1)
y = MsgBox(t10, 0, "Routine Prime1325b")
End
' Print results (selected numbers)
640 For i1 = 1 To 49
Cells(n9, i1).Value = a(i1)
Next i1
Cells(n9, 50).Value = s1
Return
' Print results (squares)
650 n2 = n2 + 1
If n2 = 5 Then
n2 = 1: k1 = k1 + 8: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 8
End If
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = s1
Cells(k1, k2 + 2).Value = j100
i3 = 0
For i1 = 1 To 7
For i2 = 1 To 7
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a(i3)
Next i2
Next i1
Return
' Exclude solutions with identical numbers (Back Check)
800 fl1 = 1
For j1 = 1 To 49
a2 = a(j1): If a2 = 0 Then GoTo 810
For j2 = (1 + j1) To 49
If a2 = a(j2) Then fl1 = 0: Return
Next j2
810 Next j1
Return
End Sub