Vorige Pagina About the Author

' Generates Inlaid Magic Squares of order 15
' Based on Order 3 Magic Sub Squares with Different Magic Sums

' Tested with Office 2007 under Windows 7

Sub Priem15k4()

Dim a1(750), a(25), a15(225), b1(48355), b(48355), c(25)

y = MsgBox("Locked", vbCritical, "Routine Priem15k4")
End
    
    n1 = 0: n9 = 0: n10 = 0: k1 = 1: k2 = 1
    
    Sheets("Klad1").Select
    
    t1 = Timer

For j200 = 2 To 1292
s15 = Sheets("Input15").Cells(j200, 52).Value

Erase a15

'Define Center Elements

For i1 = 1 To 25
    a(i1) = Sheets("Input15").Cells(j200, i1).Value
Next i1
a15(17) = a(1):   a15(20) = a(2):   a15(23) = a(3):   a15(26) = a(4):   a15(29) = a(5):
a15(62) = a(6):   a15(65) = a(7):   a15(68) = a(8):   a15(71) = a(9):   a15(74) = a(10):
a15(107) = a(11): a15(110) = a(12): a15(113) = a(13): a15(116) = a(14): a15(119) = a(15):
a15(152) = a(16): a15(155) = a(17): a15(158) = a(18): a15(161) = a(19): a15(164) = a(20):
a15(197) = a(21): a15(200) = a(22): a15(203) = a(23): a15(206) = a(24): a15(209) = a(25):

Erase a

For j101 = 27 To 51
j100 = Sheets("Input15").Cells(j200, j101).Value

'   Define variables

    Cntr3 = Sheets("Pairs7").Cells(j100, 6).Value      'Mid
    s1 = 3 * Cntr3
    nVar1 = Sheets("Pairs7").Cells(j100, 9).Value
   
    For i1 = 1 To nVar1
        a1(i1) = Sheets("Pairs7").Cells(j100, 9 + i1).Value
    Next i1
    m1 = 1: m2 = nVar1
    If a1(1) = 1 Then m1 = 2: m2 = m2 - 1
    
    Erase b1
    For i1 = m1 To m2
        b1(a1(i1)) = a1(i1)
    Next i1

'   Remove Used Primes

    For i1 = 1 To 225
        b1(a15(i1)) = 0
    Next i1

'   Generate Squares

For j9 = m1 To m2                                                     'a(9)
If b1(a1(j9)) = 0 Then GoTo 160
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 160
a(9) = a1(j9)

For j8 = m1 To m2                                                     'a(8)
If b1(a1(j8)) = 0 Then GoTo 120
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 120
a(8) = a1(j8)

    a(7) = s1 - a(8) - a(9):
    If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 110:
    If b1(a(7)) = 0 Then GoTo 110
    
    a(6) = 4 * s1 / 3 - a(8) - 2 * a(9):
    If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 110:
    If b1(a(6)) = 0 Then GoTo 110
    
    a(5) = s1 / 3:
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 110:
    ''If b1(a(5)) = 0 Then GoTo 110
    
    a(4) = -2 * s1 / 3 + a(8) + 2 * a(9):
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 110:
    If b1(a(4)) = 0 Then GoTo 110
    
    a(3) = -s1 / 3 + a(8) + a(9):
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 110:
    If b1(a(3)) = 0 Then GoTo 110
    
    a(2) = 2 * s1 / 3 - a(8):
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 110:
    If b1(a(2)) = 0 Then GoTo 110
    
    a(1) = 2 * s1 / 3 - a(9):
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 110:
    If b1(a(1)) = 0 Then GoTo 110

'                         Exclude solutions with identical numbers

                          GoSub 800: If fl1 = 0 Then GoTo 110
                          n10 = n10 + 1: GoSub 750            'Assign to a15()
                          
                          Erase b, c: GoTo 5                  'Assign only first square
   
110 b(c(8)) = 0: c(8) = 0
120 Next j8
    
    b(c(9)) = 0: c(9) = 0
160 Next j9

'   Not found
    Erase b, c: n10 = 0: GoTo 2000

5
    If n10 = 25 Then
        GoSub 850:
        If fl1 = 1 Then
           n9 = n9 + 1: GoSub 660   'Print results (squares)
           n10 = 0: GoTo 2000
        End If
    End If

      Next j101
2000  n10 = 0
      Next j200

   t2 = Timer
    
   t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
   y = MsgBox(t10, 0, "Routine Priem15k4")

End

'   Assign to a15()

750 Select Case n10

    Case 1
    a15(1) = a(1):  a15(2) = a(2):  a15(3) = a(3):
    a15(16) = a(4): a15(17) = a(5): a15(18) = a(6):
    a15(31) = a(7): a15(32) = a(8): a15(33) = a(9):
                
    Case 2
    a15(4) = a(1):  a15(5) = a(2):  a15(6) = a(3):
    a15(19) = a(4): a15(20) = a(5): a15(21) = a(6):
    a15(34) = a(7): a15(35) = a(8): a15(36) = a(9):
                
    Case 3
    a15(7) = a(1):  a15(8) = a(2):  a15(9) = a(3):
    a15(22) = a(4): a15(23) = a(5): a15(24) = a(6):
    a15(37) = a(7): a15(38) = a(8): a15(39) = a(9):
                
    Case 4
    a15(10) = a(1): a15(11) = a(2): a15(12) = a(3):
    a15(25) = a(4): a15(26) = a(5): a15(27) = a(6):
    a15(40) = a(7): a15(41) = a(8): a15(42) = a(9):
                
    Case 5
    a15(13) = a(1): a15(14) = a(2): a15(15) = a(3):
    a15(28) = a(4): a15(29) = a(5): a15(30) = a(6):
    a15(43) = a(7): a15(44) = a(8): a15(45) = a(9):
                
    Case 6
    a15(46) = a(1): a15(47) = a(2): a15(48) = a(3):
    a15(61) = a(4): a15(62) = a(5): a15(63) = a(6):
    a15(76) = a(7): a15(77) = a(8): a15(78) = a(9):
                
    Case 7
    a15(49) = a(1): a15(50) = a(2): a15(51) = a(3):
    a15(64) = a(4): a15(65) = a(5): a15(66) = a(6):
    a15(79) = a(7): a15(80) = a(8): a15(81) = a(9):
                
    Case 8
    a15(52) = a(1): a15(53) = a(2): a15(54) = a(3):
    a15(67) = a(4): a15(68) = a(5): a15(69) = a(6):
    a15(82) = a(7): a15(83) = a(8): a15(84) = a(9):
                
    Case 9
    a15(55) = a(1): a15(56) = a(2): a15(57) = a(3):
    a15(70) = a(4): a15(71) = a(5): a15(72) = a(6):
    a15(85) = a(7): a15(86) = a(8): a15(87) = a(9):
        
    Case 10
    a15(58) = a(1): a15(59) = a(2): a15(60) = a(3):
    a15(73) = a(4): a15(74) = a(5): a15(75) = a(6):
    a15(88) = a(7): a15(89) = a(8): a15(90) = a(9):
                
    Case 11
    a15(91) = a(1):  a15(92) = a(2):  a15(93) = a(3):
    a15(106) = a(4): a15(107) = a(5): a15(108) = a(6):
    a15(121) = a(7): a15(122) = a(8): a15(123) = a(9):
                
    Case 12
    a15(94) = a(1):  a15(95) = a(2):  a15(96) = a(3):
    a15(109) = a(4): a15(110) = a(5): a15(111) = a(6):
    a15(124) = a(7): a15(125) = a(8): a15(126) = a(9):
                
    Case 13
    a15(97) = a(1): a15(98) = a(2): a15(99) = a(3):
    a15(112) = a(4): a15(113) = a(5): a15(114) = a(6):
    a15(127) = a(7): a15(128) = a(8): a15(129) = a(9):
                
    Case 14
    a15(100) = a(1): a15(101) = a(2): a15(102) = a(3):
    a15(115) = a(4): a15(116) = a(5): a15(117) = a(6):
    a15(130) = a(7): a15(131) = a(8): a15(132) = a(9):
        
    Case 15
    a15(103) = a(1): a15(104) = a(2): a15(105) = a(3):
    a15(118) = a(4): a15(119) = a(5): a15(120) = a(6):
    a15(133) = a(7): a15(134) = a(8): a15(135) = a(9):
                
    Case 16
    a15(136) = a(1): a15(137) = a(2): a15(138) = a(3):
    a15(151) = a(4): a15(152) = a(5): a15(153) = a(6):
    a15(166) = a(7): a15(167) = a(8): a15(168) = a(9):
    
    Case 17
    a15(139) = a(1): a15(140) = a(2): a15(141) = a(3):
    a15(154) = a(4): a15(155) = a(5): a15(156) = a(6):
    a15(169) = a(7): a15(170) = a(8): a15(171) = a(9):
                
    Case 18
    a15(142) = a(1): a15(143) = a(2): a15(144) = a(3):
    a15(157) = a(4): a15(158) = a(5): a15(159) = a(6):
    a15(172) = a(7): a15(173) = a(8): a15(174) = a(9):
                
    Case 19
    a15(145) = a(1): a15(146) = a(2): a15(147) = a(3):
    a15(160) = a(4): a15(161) = a(5): a15(162) = a(6):
    a15(175) = a(7): a15(176) = a(8): a15(177) = a(9):
        
    Case 20
    a15(148) = a(1): a15(149) = a(2): a15(150) = a(3):
    a15(163) = a(4): a15(164) = a(5): a15(165) = a(6):
    a15(178) = a(7): a15(179) = a(8): a15(180) = a(9):
    
    Case 21
    a15(181) = a(1): a15(182) = a(2): a15(183) = a(3):
    a15(196) = a(4): a15(197) = a(5): a15(198) = a(6):
    a15(211) = a(7): a15(212) = a(8): a15(213) = a(9):
                
    Case 22
    a15(184) = a(1): a15(185) = a(2): a15(186) = a(3):
    a15(199) = a(4): a15(200) = a(5): a15(201) = a(6):
    a15(214) = a(7): a15(215) = a(8): a15(216) = a(9):
                
    Case 23
    a15(187) = a(1): a15(188) = a(2): a15(189) = a(3):
    a15(202) = a(4): a15(203) = a(5): a15(204) = a(6):
    a15(217) = a(7): a15(218) = a(8): a15(219) = a(9):
                
    Case 24
    a15(190) = a(1): a15(191) = a(2): a15(192) = a(3):
    a15(205) = a(4): a15(206) = a(5): a15(207) = a(6):
    a15(220) = a(7): a15(221) = a(8): a15(222) = a(9):
                
    Case 25
    a15(193) = a(1): a15(194) = a(2): a15(195) = a(3):
    a15(208) = a(4): a15(209) = a(5): a15(210) = a(6):
    a15(223) = a(7): a15(224) = a(8): a15(225) = a(9):

    End Select
    Return

'   Print results: squares a15()

660 n1 = n1 + 1
    If n1 = 2 Then
        n1 = 1: k1 = k1 + 16: k2 = 1
    Else
        If n9 > 1 Then k2 = k2 + 16
    End If
    
    Cells(k1, k2 + 1).Select
    Cells(k1, k2 + 1).Font.Color = -4165632
    Cells(k1, k2 + 1).Value = s15
    
    i3 = 0
    For i1 = 1 To 15
        For i2 = 1 To 15
            i3 = i3 + 1
            Cells(k1 + i1, k2 + i2).Value = a15(i3)
        Next i2
    Next i1
    Return

'   Exclude solutions with identical numbers a()

800 fl1 = 1
    For j1 = 1 To 9
       a2 = a(j1)
       For j2 = (1 + j1) To 9
           If a2 = a(j2) Then fl1 = 0: Return
       Next j2
    Next j1
    Return

'   Exclude solutions with identical numbers a15()

850 fl1 = 1
    For j1 = 1 To 225
       a2 = a15(j1): If a2 = 0 Then GoTo 860
       For j2 = (1 + j1) To 225
           If a2 = a15(j2) Then fl1 = 0: Return
       Next j2
860 Next j1
    Return

End Sub

Vorige Pagina About the Author