' Constructs 11 x 11 Bordered Magic Squares (Prime Numbers)
' Split Border Lines
' Tested with Office 2007 under Windows 7
Sub Priem11b()
Dim a1(2448), a(121), a3(80), a11(121), b1(43300), b(43300), c(121)
y = MsgBox("Locked", vbCritical, "Routine Priem11b")
End
Sheets("Klad1").Select
n5 = 0: n9 = 0: k1 = 1: k2 = 1: n3 = 0
ShtNm1 = "Pairs7"
ShtNm2 = "Sqrs7"
t1 = Timer
For j100 = 2 To 344
' Start Reading Data ShtNm2
Rcrd1a = Sheets(ShtNm2).Cells(j100, 51).Value
MC7 = Sheets(ShtNm2).Cells(j100, 50).Value
' Read Prime Numbers From Sheet ShtNm1
Pr3 = Sheets(ShtNm1).Cells(Rcrd1a, 1).Value 'PairSum
Cntr3 = Sheets(ShtNm1).Cells(Rcrd1a, 6).Value 'Center Element
s3 = 3 * Cntr3 'MC3
s5 = 5 * Cntr3 'MC5
s7 = 7 * Cntr3 'MC7
s11 = 11 * Cntr3 'MC11
nVar = Sheets(ShtNm1).Cells(Rcrd1a, 9).Value
If nVar < 121 Then GoTo 1000
If MC7 <> s7 Then
y = MsgBox("Conflict in Data", vbCritical, "Read " + ShtNm2 + " " + CStr(j100))
End
End If
Erase b1
For j1 = 1 To nVar
x = Sheets(ShtNm1).Cells(Rcrd1a, 9 + j1).Value
b1(x) = x
Next j1
pMax = Sheets(ShtNm1).Cells(Rcrd1a, 9 + nVar).Value
' Read Concentric Square (7 x 7)
For i1 = 1 To 49
a(i1) = Sheets(ShtNm2).Cells(j100, i1).Value
Next i1
n31 = 1: n32 = 49: GoSub 900 'Remove used primes from available primes
Erase a11
' Store in a11()
a11(25) = a(1): a11(26) = a(2): a11(27) = a(3): a11(28) = a(4): a11(29) = a(5): a11(30) = a(6): a11(31) = a(7):
a11(36) = a(8): a11(37) = a(9): a11(38) = a(10): a11(39) = a(11): a11(40) = a(12): a11(41) = a(13): a11(42) = a(14):
a11(47) = a(15): a11(48) = a(16): a11(49) = a(17): a11(50) = a(18): a11(51) = a(19): a11(52) = a(20): a11(53) = a(21):
a11(58) = a(22): a11(59) = a(23): a11(60) = a(24): a11(61) = a(25): a11(62) = a(26): a11(63) = a(27): a11(64) = a(28):
a11(69) = a(29): a11(70) = a(30): a11(71) = a(31): a11(72) = a(32): a11(73) = a(33): a11(74) = a(34): a11(75) = a(35):
a11(80) = a(36): a11(81) = a(37): a11(82) = a(38): a11(83) = a(39): a11(84) = a(40): a11(85) = a(41): a11(86) = a(42):
a11(91) = a(43): a11(92) = a(44): a11(93) = a(45): a11(94) = a(46): a11(95) = a(47): a11(96) = a(48): a11(97) = a(49):
Erase a
' Restore available pairs in a1()
n10 = 0
For j1 = 1 To pMax
If b1(j1) <> 0 Then
n10 = n10 + 1
a1(n10) = b1(j1)
End If
Next j1
m1 = 1: m2 = n10: n10 = 0
If a1(1) = 1 Then m1 = 2: m2 = m2 - 1
' Generate 2 x 5 Border Parts
For j1 = m1 To m2
If b1(a1(j1)) = 0 Then GoTo 10
If b(a1(j1)) = 0 Then b(a1(j1)) = a1(j1): c(1) = a1(j1) Else GoTo 10
a(1) = a1(j1)
a(6) = Pr3 - a(1): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60
For j2 = m1 To m2
If b1(a1(j2)) = 0 Then GoTo 20
If b(a1(j2)) = 0 Then b(a1(j2)) = a1(j2): c(2) = a1(j2) Else GoTo 20
a(2) = a1(j2)
a(7) = Pr3 - a(2): If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
For j3 = m1 To m2
If b1(a1(j3)) = 0 Then GoTo 30
If b(a1(j3)) = 0 Then b(a1(j3)) = a1(j3): c(3) = a1(j3) Else GoTo 30
a(3) = a1(j3)
a(8) = Pr3 - a(3): If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 80
For j4 = m1 To m2
If b1(a1(j4)) = 0 Then GoTo 40
If b(a1(j4)) = 0 Then b(a1(j4)) = a1(j4): c(4) = a1(j4) Else GoTo 40
a(4) = a1(j4)
a(9) = Pr3 - a(4): If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 90
a(5) = s5 - a(4) - a(3) - a(2) - a(1)
If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50:
If b1(a(5)) = 0 Then GoTo 50
If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
a(10) = Pr3 - a(5): If b(a(10)) = 0 Then b(a(10)) = a(10): c(10) = a(10) Else GoTo 100
n10 = n10 + 1
Select Case n10
Case 1:
a11(4) = a(1): a11(5) = a(2): a11(6) = a(3): a11(7) = a(4): a11(8) = a(5):
a11(15) = a(6): a11(16) = a(7): a11(17) = a(8): a11(18) = a(9): a11(19) = a(10):
n31 = 1: n32 = 10: GoSub 950 'Remove used primes and store in a3()
Erase b, c: GoTo 10
Case 2:
a11(43) = a(6): a11(44) = a(1):
a11(54) = a(7): a11(55) = a(2):
a11(65) = a(8): a11(66) = a(3):
a11(76) = a(9): a11(77) = a(4):
a11(87) = a(10): a11(88) = a(5):
n31 = 1: n32 = 10: GoSub 950 'Remove used primes and store in a3()
Erase b, c: GoTo 10
Case 3:
a11(103) = a(1): a11(104) = a(2): a11(105) = a(3): a11(106) = a(4): a11(107) = a(5):
a11(114) = a(6): a11(115) = a(7): a11(116) = a(8): a11(117) = a(9): a11(118) = a(10):
n31 = 1: n32 = 10: GoSub 950 'Remove used primes and store in a3()
Erase b, c: GoTo 10
Case 4:
a11(34) = a(6): a11(35) = a(1):
a11(45) = a(7): a11(46) = a(2):
a11(56) = a(8): a11(57) = a(3):
a11(67) = a(9): a11(68) = a(4):
a11(78) = a(10): a11(79) = a(5):
n31 = 1: n32 = 10: GoSub 950 'Remove used primes and store in a3()
Erase b, c: GoSub 2000 'Complete Border with Corners (3 x 3)
If fl1 = 1 Then
GoSub 800: 'Back Check Identical Numbers a11()
If fl1 = 1 Then
n9 = n9 + 1: GoSub 1650 'Print results (squares)
' n9 = n9 + 1: GoSub 1640 'Print results (lines)
End If
Erase a3: n3 = 0: n10 = 0
Erase b1, b, c: GoTo 1000 'Continue with next Magic Sum
Else
GoSub 955 'Reassign removed primes and continue
Erase b, c: GoTo 10
End If
End Select
b(c(10)) = 0: c(10) = 0
100 b(c(5)) = 0: c(5) = 0
50 b(c(9)) = 0: c(9) = 0
90 b(c(4)) = 0: c(4) = 0
40 Next j4
b(c(8)) = 0: c(8) = 0
80 b(c(3)) = 0: c(3) = 0
30 Next j3
b(c(7)) = 0: c(7) = 0
70 b(c(2)) = 0: c(2) = 0
20 Next j2
b(c(6)) = 0: c(6) = 0
60 b(c(1)) = 0: c(1) = 0
10 Next j1
n3 = 0: n10 = 0
Erase b1, b, c
1000 Next j100
t2 = Timer
t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
y = MsgBox(t10, 0, "Routine Priem11b")
End
' Complete Border with Corners (3 x 3)
2000 fl1 = 1
For j19 = m1 To m2 'a(19)
If b1(a1(j19)) = 0 Then GoTo 2090
If b(a1(j19)) = 0 Then b(a1(j19)) = a1(j19): c(19) = a1(j19) Else GoTo 2090
a(19) = a1(j19)
For j18 = m1 To m2 'a(18)
If b1(a1(j18)) = 0 Then GoTo 2080
If b(a1(j18)) = 0 Then b(a1(j18)) = a1(j18): c(18) = a1(j18) Else GoTo 2080
a(18) = a1(j18)
a(17) = s3 - a(18) - a(19):
If a(17) < a1(m1) Or a(17) > a1(m2) Then GoTo 2070:
If b1(a(17)) = 0 Then GoTo 2070
If b(a(17)) = 0 Then b(a(17)) = a(17): c(17) = a(17) Else GoTo 2070
a(16) = 4 * s3 / 3 - a(18) - 2 * a(19):
If a(16) < a1(m1) Or a(16) > a1(m2) Then GoTo 2060:
If b1(a(16)) = 0 Then GoTo 2060
If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 2060
a(15) = s3 / 3:
If a(15) < a1(m1) Or a(15) > a1(m2) Then GoTo 2050:
''If b1(a(15)) = 0 Then GoTo 2050 'Will not be used
If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 2050
a(14) = -2 * s3 / 3 + a(18) + 2 * a(19):
If a(14) < a1(m1) Or a(14) > a1(m2) Then GoTo 2040:
If b1(a(14)) = 0 Then GoTo 2040
If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 2040
a(13) = -s3 / 3 + a(18) + a(19):
If a(13) < a1(m1) Or a(13) > a1(m2) Then GoTo 2030:
If b1(a(13)) = 0 Then GoTo 2030
If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 2030
a(12) = 2 * s3 / 3 - a(18):
If a(12) < a1(m1) Or a(12) > a1(m2) Then GoTo 2020:
If b1(a(12)) = 0 Then GoTo 2020
If b(a(12)) = 0 Then b(a(12)) = a(12): c(12) = a(12) Else GoTo 2020
a(11) = 2 * s3 / 3 - a(19):
If a(11) < a1(m1) Or a(11) > a1(m2) Then GoTo 2010:
If b1(a(11)) = 0 Then GoTo 2010
If b(a(11)) = 0 Then b(a(11)) = a(11): c(11) = a(11) Else GoTo 2010
n10 = n10 + 1
Select Case n10
Case 5:
a11(1) = a(19): a11(2) = a(17): a11(3) = a(18):
a11(12) = a(13): a11(13) = a(11): a11(14) = a(12):
a11(23) = a(16): a11(24) = a(14):
n31 = 1: n32 = 9: GoSub 950 'Remove used primes a() and store in a3()
Erase b, c: GoTo 2090
Case 6:
a11(9) = a(18): a11(10) = a(19): a11(11) = a(17):
a11(20) = a(12): a11(21) = a(13): a11(22) = a(11):
a11(32) = a(16): a11(33) = a(14):
n31 = 1: n32 = 9: GoSub 950 'Remove used primes a() and store in a3()
Erase b, c: GoTo 2090
Case 7:
a11(89) = a(16): a11(90) = a(14):
a11(100) = a(19): a11(101) = a(17): a11(102) = a(18):
a11(111) = a(13): a11(112) = a(11): a11(113) = a(12):
n31 = 1: n32 = 9: GoSub 950 'Remove used primes a() and store in a3()
Erase b, c: GoTo 2090
Case 8:
a11(98) = a(16): a11(99) = a(14):
a11(108) = a(18): a11(109) = a(19): a11(110) = a(17):
a11(119) = a(12): a11(120) = a(13): a11(121) = a(11):
End Select
Erase b, c: Return
2005 b(c(11)) = 0: c(11) = 0
2010 b(c(12)) = 0: c(12) = 0
2020 b(c(13)) = 0: c(12) = 0
2030 b(c(14)) = 0: c(14) = 0
2040 b(c(15)) = 0: c(15) = 0
2050 b(c(16)) = 0: c(16) = 0
2060 b(c(17)) = 0: c(17) = 0
2070 b(c(18)) = 0: c(18) = 0
2080 Next j18
b(c(19)) = 0: c(19) = 0
2090 Next j19
fl1 = 0
Return
' Double Check Identical Numbers a11()
800 fl1 = 1
For i1 = 1 To 121
a20 = a11(i1): If a20 = 0 Then GoTo 810
For i2 = (1 + i1) To 121
If a20 = a11(i2) Then fl1 = 0: Return
Next i2
810 Next i1
Return
' Remove used pairs from b1()
900 For i1 = n31 To n32
b1(a(i1)) = 0
b1(Pr3 - a(i1)) = 0 'For Non Symmetrcal Embedded Squares
Next i1
Return
' Remove used pairs from b1()
' Store used primes temporarely in a3()
950 For i1 = n31 To n32
b1(a(i1)) = 0
n3 = n3 + 1: a3(n3) = a(i1)
Next i1
Return
' Reassign primes a3() to available primes b1()
955 For i1 = 1 To n3
b1(a3(i1)) = a3(i1)
Next i1
Erase a3: n3 = 0: n10 = 0
Return
' Print results (lines)
1640 Cells(n9, 122).Select
For i1 = 1 To 121
Cells(n9, i1).Value = a11(i1)
Next i1
Cells(n9, 122).Value = s11
Cells(n9, 123).Value = Rcrd1a
Return
' Print results (squares)
1650 n2 = n2 + 1
If n2 = 2 Then
n2 = 1: k1 = k1 + 12: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 12
End If
Cells(k1, k2 + 1).Select
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = "MC = " + CStr(s11)
i3 = 0
For i1 = 1 To 11
For i2 = 1 To 11
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a11(i3)
Next i2
Next i1
Return
End Sub