Vorige Pagina Volgende Pagina About the Author

' Constructs 11 x 11 Eccentric Magic Squares for Prime Numbers (Part 2)
' Split Border Lines

' Tested with Office 2007 under Windows 7

Sub Priem11c2()
    
    Dim a1(2448), a(121), a3(40), a11(121), b1(43300), b(43300), c(121)
 
    y = MsgBox("Locked", vbCritical, "Routine Priem11c2")
    End

    Sheets("Klad1").Select

    n5 = 0: n9 = 0: k1 = 1: k2 = 1: n3 = 0
    ShtNm1 = "Pairs7"
    ShtNm2 = "Ecc11_1"
    
    t1 = Timer
    
    For j100 = 2 To 39

'       Start Reading Data ShtNm2
    
        Rcrd1a = Sheets(ShtNm2).Cells(j100, 123).Value
        MC11 = Sheets(ShtNm2).Cells(j100, 122).Value

'       Read Prime Numbers From Sheet ShtNm1

        Pr3 = Sheets(ShtNm1).Cells(Rcrd1a, 1).Value      'PairSum
        Cntr3 = Sheets(ShtNm1).Cells(Rcrd1a, 6).Value    'Center Element
        
        s3 = 3 * Cntr3                                   'MC3
        s4 = 4 * Cntr3                                   'MC4
        s9 = 9 * Cntr3                                   'MC9
        s11 = 11 * Cntr3                                 'MC11
        
        nVar = Sheets(ShtNm1).Cells(Rcrd1a, 9).Value

        If nVar < 121 Then GoTo 1000

        If MC11 <> s11 Then
                y = MsgBox("Conflict in Data", vbCritical, "Read " + ShtNm2 + " " + CStr(j100))
                End
        End If

        Erase b1
        For j1 = 1 To nVar
            x = Sheets(ShtNm1).Cells(Rcrd1a, 9 + j1).Value
            b1(x) = x
        Next j1
        pMax = Sheets(ShtNm1).Cells(Rcrd1a, 9 + nVar).Value

'       Read Partly Completed Eccentric Square 11 x 11
        
        Erase a11
        
        For i1 = 1 To 121
            a(i1) = Sheets(ShtNm2).Cells(j100, i1).Value
            a11(i1) = a(i1)
        Next i1
        n31 = 1: n32 = 121: GoSub 900 'Remove used primes from available primes

        Erase a

'       Restore available pairs in a1()

        n10 = 0
        For j1 = 1 To pMax
            If b1(j1) <> 0 Then
                n10 = n10 + 1
                a1(n10) = b1(j1)
            End If
        Next j1
        m1 = 1: m2 = n10: n10 = 0
        If a1(1) = 1 Then m1 = 2: m2 = m2 - 1

'       Determine Magic Square Order 3

For j9 = m1 To m2                                                     'a(9)
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 90
a(9) = a1(j9)

For j8 = m1 To m2                                                     'a(8)
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 80
a(8) = a1(j8)

    a(7) = s3 - a(8) - a(9):
    If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 70:
    If b1(a(7)) = 0 Then GoTo 70
    If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
    
    a(6) = 4 * s3 / 3 - a(8) - 2 * a(9):
    If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 60:
    If b1(a(6)) = 0 Then GoTo 60
    If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60

    a(5) = s3 / 3:
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50:
    ''If b1(a(5)) = 0 Then GoTo 50                                   'Might be Non Prime
    If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
    
    a(4) = -2 * s3 / 3 + a(8) + 2 * a(9):
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40:
    If b1(a(4)) = 0 Then GoTo 40
    If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
    
    a(3) = -s3 / 3 + a(8) + a(9):
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30:
    If b1(a(3)) = 0 Then GoTo 30
    If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
    
    a(2) = 2 * s3 / 3 - a(8):
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20:
    If b1(a(2)) = 0 Then GoTo 20
    If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
    
    a(1) = 2 * s3 / 3 - a(9):
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10:
    If b1(a(1)) = 0 Then GoTo 10
    If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10


'                       Store Results in a11()
                          
                        a11(1) = a(9):  a11(2) = a(7):  a11(3) = a(8):
                        a11(12) = a(3): a11(13) = a(1): a11(14) = a(2):
                        a11(23) = a(6): a11(24) = a(4):

                        GoSub 2000                          'Determine Rectangles 2 x 4
                        If fl1 = 0 Then GoTo 5
                          
                        GoSub 800: If fl1 = 0 Then GoTo 5   'Back Check Identical Numbers a11()

'                       n9 = n9 + 1: GoSub 1640  'Print results (selected numbers)
                        n9 = n9 + 1: GoSub 1650  'Print results (squares)

                        Erase b1, b, c: GoTo 1000

                          
5  b(c(1)) = 0: c(1) = 0
10 b(c(2)) = 0: c(2) = 0
20 b(c(3)) = 0: c(2) = 0
30 b(c(4)) = 0: c(4) = 0
40 b(c(5)) = 0: c(5) = 0
50 b(c(6)) = 0: c(6) = 0
60 b(c(7)) = 0: c(7) = 0
70 b(c(8)) = 0: c(8) = 0
80 Next j8
    
   b(c(9)) = 0: c(9) = 0
90 Next j9

     Erase b1, b, c
1000 Next j100
    
    t2 = Timer
    
    t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
    y = MsgBox(t10, 0, "Routine Priem11c2")

End

'   Determine Rectangles 2 x 4

2000 fl1 = 1

    For j10 = m1 To m2
    If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 100
    a(10) = a1(j10)
    
    a(14) = Pr3 - a(10): If b(a(14)) = 0 Then b(a(14)) = a(14): c(14) = a(14) Else GoTo 140
   
    For j11 = m1 To m2
    If b(a1(j11)) = 0 Then b(a1(j11)) = a1(j11): c(11) = a1(j11) Else GoTo 110
    a(11) = a1(j11)
   
    a(15) = Pr3 - a(11): If b(a(15)) = 0 Then b(a(15)) = a(15): c(15) = a(15) Else GoTo 150
  
    For j12 = m1 To m2
    If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 120
    a(12) = a1(j12)
    
    a(16) = Pr3 - a(12): If b(a(16)) = 0 Then b(a(16)) = a(16): c(16) = a(16) Else GoTo 160
    
    a(13) = s4 - a(12) - a(11) - a(10)
    If a(13) < a1(m1) Or a(13) > a1(m2) Then GoTo 130:
    If b1(a(13)) = 0 Then GoTo 130
    If b(a(13)) = 0 Then b(a(13)) = a(13): c(13) = a(13) Else GoTo 130
    
    a(17) = Pr3 - a(13): If b(a(17)) = 0 Then b(a(17)) = a(17): c(17) = a(17) Else GoTo 170
    
    For j18 = m1 To m2
    If b(a1(j18)) = 0 Then b(a1(j18)) = a1(j18): c(18) = a1(j18) Else GoTo 180
    a(18) = a1(j18)

    a(19) = Pr3 - a(18): If b(a(19)) = 0 Then b(a(19)) = a(19): c(19) = a(19) Else GoTo 190
    
    For j20 = m1 To m2
    If b(a1(j20)) = 0 Then b(a1(j20)) = a1(j20): c(20) = a1(j20) Else GoTo 200
    a(20) = a1(j20)
    
    a(21) = Pr3 - a(20): If b(a(21)) = 0 Then b(a(21)) = a(21): c(21) = a(21) Else GoTo 210
    
    For j22 = m1 To m2
    If b(a1(j22)) = 0 Then b(a1(j22)) = a1(j22): c(22) = a1(j22) Else GoTo 220
    a(22) = a1(j22)

    a(23) = Pr3 - a(22): If b(a(23)) = 0 Then b(a(23)) = a(23): c(23) = a(23) Else GoTo 230
    
    a(24) = s4 - a(22) - a(20) - a(18)
    If a(24) < a1(m1) Or a(24) > a1(m2) Then GoTo 240:
    If b1(a(24)) = 0 Then GoTo 240
    If b(a(24)) = 0 Then b(a(24)) = a(24): c(24) = a(24) Else GoTo 240
    
    a(25) = Pr3 - a(24): If b(a(25)) = 0 Then b(a(25)) = a(25): c(25) = a(25) Else GoTo 250

'   Store results in a11()

    a11(4) = a(13):  a11(5) = a(12):  a11(6) = a(11):  a11(7) = a(10):
    a11(15) = a(17): a11(16) = a(16): a11(17) = a(15): a11(18) = a(14):

    a11(34) = a(18): a11(35) = a(19):
    a11(45) = a(20): a11(46) = a(21):
    a11(56) = a(22): a11(57) = a(23):
    a11(67) = a(24): a11(68) = a(25):
    
    Return

    b(c(25)) = 0: c(25) = 0
250 b(c(24)) = 0: c(24) = 0
240 b(c(23)) = 0: c(23) = 0
230 b(c(22)) = 0: c(22) = 0
220 Next j22

    b(c(21)) = 0: c(21) = 0
210 b(c(20)) = 0: c(20) = 0
200 Next j20

    b(c(19)) = 0: c(19) = 0
190 b(c(18)) = 0: c(18) = 0
180 Next j18
    
    b(c(17)) = 0: c(17) = 0
170 b(c(13)) = 0: c(13) = 0
130 b(c(16)) = 0: c(16) = 0
160 b(c(12)) = 0: c(12) = 0
120 Next j12

    b(c(15)) = 0: c(15) = 0
150 b(c(11)) = 0: c(11) = 0
110 Next j11

    b(c(14)) = 0: c(14) = 0
140 b(c(10)) = 0: c(10) = 0
100 Next j10

    fl1 = 0
    
    Return

'   Double Check Identical Numbers a11()

800 fl1 = 1
    For i1 = 1 To 121
       a20 = a11(i1): If a20 = 0 Then GoTo 810
       For i2 = (1 + i1) To 121
           If a20 = a11(i2) Then fl1 = 0: Return
       Next i2
810 Next i1
    Return

'   Remove used pairs from b1()

900 For i1 = n31 To n32
        b1(a(i1)) = 0
        b1(Pr3 - a(i1)) = 0 'For Non Symmetrcal Embedded Squares
    Next i1
    Return

'    Print results (lines)

1640 Cells(n9, 122).Select
     For i1 = 1 To 121
         Cells(n9, i1).Value = a11(i1)
     Next i1
     Cells(n9, 122).Value = s11
     Cells(n9, 123).Value = Rcrd1a
     Return

'    Print results (squares)

1650 n2 = n2 + 1
     If n2 = 2 Then
         n2 = 1: k1 = k1 + 12: k2 = 1
     Else
         If n9 > 1 Then k2 = k2 + 12
     End If

     Cells(k1, k2 + 1).Select
     Cells(k1, k2 + 1).Font.Color = -4165632
     Cells(k1, k2 + 1).Value = "MC = " + CStr(s11)
    
     i3 = 0
     For i1 = 1 To 11
         For i2 = 1 To 11
             i3 = i3 + 1
             Cells(k1 + i1, k2 + i2).Value = a11(i3)
         Next i2
     Next i1
     
     Return

End Sub

Vorige Pagina Volgende Pagina About the Author