Vorige Pagina About the Author

' Generates Simple Magic Squares of order 6, composed of 4 Semi Magic Squares (7 Magic Lines)

' Tested with Office 2007 under Windows 7

Sub Priem3e1()

Dim a1(591), a(9), b1(21803), b(21803), c(9), a6(36)

y = MsgBox("Locked", vbCritical, "Routine Priem3e1")
End
    
    n1 = 0: n9 = 0: n10 = 0: k1 = 1: k2 = 1
    ShtNm1 = "Pairs6"                           'Pairs6, Pairs8 for 6 x 6 and 12 x 12
                                                'Pairs3, Pairs7 for 9 x 9 and 15 x 15
    Sheets("Klad1").Select
    t1 = Timer

'   Generate Squares

For j10 = 160 To 1451
                                  
'   Define variables

    Pr3 = Sheets(ShtNm1).Cells(j10, 1).Value     'Pair Sum
    s1 = 3 * Pr3 / 2
    MC6 = 2 * s1
    nVar1 = Sheets(ShtNm1).Cells(j10, 5).Value
    
'   Read Prime Numbers From sheet ShtNm1
    
    For i1 = 1 To nVar1
        a1(i1) = Sheets(ShtNm1).Cells(j10, 10 + i1).Value
    Next i1

    m1 = 1: m2 = nVar1

    Erase b1

    For i1 = m1 To m2
        b1(a1(i1)) = a1(i1)
    Next i1

'   Generate Squares

For j9 = m1 To m2                                                     'a(9)
If b1(a1(j9)) = 0 Then GoTo 160
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 160
a(9) = a1(j9)

For j8 = m1 To m2                                                     'a(8)
If b1(a1(j8)) = 0 Then GoTo 120
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 120
a(8) = a1(j8)

    a(7) = s1 - a(8) - a(9):
    If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 110:
    If b1(a(7)) = 0 Then GoTo 110
    
For j6 = m1 To m2                                                     'a(6)
If b1(a1(j6)) = 0 Then GoTo 100
If b(a1(j6)) = 0 Then b(a1(j6)) = a1(j6): c(6) = a1(j6) Else GoTo 100
a(6) = a1(j6)

    a(5) = -s1 + a(6) + a(8) + 2 * a(9)
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 80:
    If b1(a(5)) = 0 Then GoTo 80
    
    a(4) = 2 * s1 - 2 * a(6) - a(8) - 2 * a(9)
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 80:
    If b1(a(4)) = 0 Then GoTo 80
    
    a(3) = s1 - a(6) - a(9)
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 80:
    If b1(a(3)) = 0 Then GoTo 80
    
    a(2) = 2 * s1 - a(6) - 2 * a(8) - 2 * a(9)
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 80:
    If b1(a(2)) = 0 Then GoTo 80
    
    a(1) = -2 * s1 + 2 * a(6) + 2 * a(8) + 3 * a(9)
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 80:
    If b1(a(1)) = 0 Then GoTo 80

'                         Exclude solutions with identical numbers

                          GoSub 800: If fl1 = 0 Then GoTo 80
                          
                          n10 = n10 + 1
                          If n10 = 4 Then
                             GoSub 750                    ' Load Square Nr 4
                             n9 = n9 + 1: GoSub 650       ' Print results (squares 6 x 6)
                             Erase b, c: n10 = 0: GoTo 10 ' Print only first square
                          Else
                             GoSub 750                    ' Load Square Nr 1,2 or 3
                             GoSub 900                    ' Remove used primes from available primes
                             Erase b, c: GoTo 160
                          End If
   
80  b(c(6)) = 0: c(6) = 0
100 Next j6
   
110 b(c(8)) = 0: c(8) = 0
120 Next j8
    
    b(c(9)) = 0: c(9) = 0
160 Next j9
    
10  n10 = 0
    Next j10

   t2 = Timer
    
   t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
   y = MsgBox(t10, 0, "Routine Priem3e1")

End

'   Print results (squares 6 x 6)

650  n2 = n2 + 1
     If n2 = 5 Then
         n2 = 1: k1 = k1 + 7: k2 = 1
     Else
         If n9 > 1 Then k2 = k2 + 7
     End If
     
     Cells(k1, k2 + 1).Select
     Cells(k1, k2 + 1).Font.Color = -4165632
     Cells(k1, k2 + 1).Value = MC6
    
     i3 = 0
     For i1 = 1 To 6
         For i2 = 1 To 6
             i3 = i3 + 1
             Cells(k1 + i1, k2 + i2).Value = a6(i3)
         Next i2
     Next i1
    
     Return

'    Transform and Assign Sub Squares

750  Select Case n10

        Case 1: 'Left  Top

                a6(1) = a(3):   a6(2) = a(2):   a6(3) = a(1):
                a6(7) = a(6):   a6(8) = a(5):   a6(9) = a(4):
                a6(13) = a(9):  a6(14) = a(8):  a6(15) = a(7):

        Case 2: 'Right Top

                a6(4) = a(1):   a6(5) = a(2):   a6(6) = a(3):
                a6(10) = a(4):  a6(11) = a(5):  a6(12) = a(6):
                a6(16) = a(7):  a6(17) = a(8):  a6(18) = a(9):

        Case 3: 'Left  Bottom
        
                a6(19) = a(1):  a6(20) = a(2):  a6(21) = a(3):
                a6(25) = a(4):  a6(26) = a(5):  a6(27) = a(6):
                a6(31) = a(7):  a6(32) = a(8):  a6(33) = a(9):
        
        Case 4: 'Right Bottom
     
                a6(22) = a(3):  a6(23) = a(2):  a6(24) = a(1):
                a6(28) = a(6):  a6(29) = a(5):  a6(30) = a(4):
                a6(34) = a(9):  a6(35) = a(8):  a6(36) = a(7):
     
    End Select
     
    Return

'   Exclude solutions with identical numbers a()

800 fl1 = 1
    For j1 = 1 To 9
       a2 = a(j1)
       For j2 = (1 + j1) To 9
           If a2 = a(j2) Then fl1 = 0: Return
       Next j2
    Next j1
    Return

'   Remove used primes from available primes

900 For i1 = 1 To 9
        b1(a(i1)) = 0
    Next i1
    Return

End Sub

Vorige Pagina About the Author