' Constructs 9 x 9 Concentric Magic Squares (Prime Numbers)
' Split Border Lines
' Tested with Office 2007 under Windows 7
Sub Priem9a2()
Dim a1(2448), a(169), a9(100), b1(43300), b(43300), c(100)
y = MsgBox("Locked", vbCritical, "Routine Priem9a2")
End
Sheets("Klad1").Select
n5 = 0: n9 = 0: k1 = 1: k2 = 1
ShtNm1 = "Pairs7"
ShtNm2 = "Sqrs7"
t1 = Timer
For j100 = 2 To 1690
' Start Reading Data ShtNm2
Rcrd1a = Sheets(ShtNm2).Cells(j100, 51).Value
MC7 = Sheets(ShtNm2).Cells(j100, 50).Value
' Read Prime Numbers From Sheet ShtNm1
Cntr3 = Sheets(ShtNm1).Cells(Rcrd1a, 6).Value 'Center
Pr3 = Sheets(ShtNm1).Cells(Rcrd1a, 1).Value 'PairSum
s3 = 3 * Cntr3 'MC3
s7 = 7 * Cntr3 'MC7
s1 = 9 * Cntr3 'MC9
nVar = Sheets(ShtNm1).Cells(Rcrd1a, 9).Value
If nVar < 81 Then GoTo 1000
If MC7 <> s7 Then
y = MsgBox("Conflict in Data", vbCritical, "Read " + ShtNm2)
End
End If
Erase b1
For j1 = 1 To nVar
x = Sheets(ShtNm1).Cells(Rcrd1a, 9 + j1).Value
b1(x) = x
Next j1
pMax = Sheets(ShtNm1).Cells(Rcrd1a, 9 + nVar).Value
' Read Concentric Square 7 x 7
For i1 = 1 To 49
a(i1) = Sheets(ShtNm2).Cells(j100, i1).Value
Next i1
n32 = 49: GoSub 950 'Remove used primes from available primes
Erase a9
a9(11) = a(1): a9(12) = a(2): a9(13) = a(3): a9(14) = a(4): a9(15) = a(5): a9(16) = a(6): a9(17) = a(7):
a9(20) = a(8): a9(21) = a(9): a9(22) = a(10): a9(23) = a(11): a9(24) = a(12): a9(25) = a(13): a9(26) = a(14):
a9(29) = a(15): a9(30) = a(16): a9(31) = a(17): a9(32) = a(18): a9(33) = a(19): a9(34) = a(20): a9(35) = a(21):
a9(38) = a(22): a9(39) = a(23): a9(40) = a(24): a9(41) = a(25): a9(42) = a(26): a9(43) = a(27): a9(44) = a(28):
a9(47) = a(29): a9(48) = a(30): a9(49) = a(31): a9(50) = a(32): a9(51) = a(33): a9(52) = a(34): a9(53) = a(35):
a9(56) = a(36): a9(57) = a(37): a9(58) = a(38): a9(59) = a(39): a9(60) = a(40): a9(61) = a(41): a9(62) = a(42):
a9(65) = a(43): a9(66) = a(44): a9(67) = a(45): a9(68) = a(46): a9(69) = a(47): a9(70) = a(48): a9(71) = a(49):
Erase a
' Restore available pairs in a1()
n10 = 0
For j1 = 1 To pMax
If b1(j1) <> 0 Then
n10 = n10 + 1
a1(n10) = b1(j1)
End If
Next j1
m1 = 1: m2 = n10: n10 = 0
If a1(1) = 1 Then m1 = 2: m2 = m2 - 1
' Generate Border
For j1 = m1 To m2
If b1(a1(j1)) = 0 Then GoTo 10
If b(a1(j1)) = 0 Then b(a1(j1)) = a1(j1): c(1) = a1(j1) Else GoTo 10
a(1) = a1(j1)
a(4) = Pr3 - a(1): If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
For j2 = m1 To m2
If b1(a1(j2)) = 0 Then GoTo 20
If b(a1(j2)) = 0 Then b(a1(j2)) = a1(j2): c(2) = a1(j2) Else GoTo 20
a(2) = a1(j2)
a(5) = Pr3 - a(2): If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
a(3) = s3 - a(2) - a(1)
If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30:
If b1(a(3)) = 0 Then GoTo 30
If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
a(6) = Pr3 - a(3): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60
For j7 = m1 To m2
If b1(a1(j7)) = 0 Then GoTo 70
If b(a1(j7)) = 0 Then b(a1(j7)) = a1(j7): c(7) = a1(j7) Else GoTo 70
a(7) = a1(j7)
a(9) = Pr3 - a(7): If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 90
a(8) = s3 - a(7) - a(1)
If a(8) < a1(m1) Or a(8) > a1(m2) Then GoTo 80:
If b1(a(8)) = 0 Then GoTo 80
If b(a(8)) = 0 Then b(a(8)) = a(8): c(8) = a(8) Else GoTo 80
a(10) = Pr3 - a(8): If b(a(10)) = 0 Then b(a(10)) = a(10): c(10) = a(10) Else GoTo 100
n10 = n10 + 1
If n10 = 1 Then
a9(7) = a(3): a9(8) = a(2): a9(9) = a(1):
a9(73) = a(4): a9(79) = a(6): a9(80) = a(5):
a9(10) = a(9): a9(18) = a(7):
a9(19) = a(10): a9(27) = a(8):
n32 = 10: GoSub 950 'Remove used primes from available primes
Erase b, c: GoTo 10
Else
a9(1) = a(1): a9(2) = a(2): a9(3) = a(3):
a9(74) = a(5): a9(75) = a(6): a9(81) = a(4):
a9(55) = a(7): a9(63) = a(9):
a9(64) = a(8): a9(72) = a(10):
n32 = 10: GoSub 950 'Remove used primes from available primes
Erase b, c: GoSub 2000 'Complete Border with remaining segments (3 x 1)
If fl1 = 0 Then Erase b1, b, c: GoTo 1000 'Not possible to complete Border
GoSub 800: 'Back Check Identical Numbers a10()
If fl1 = 1 Then
' n9 = n9 + 1: GoSub 2650 'Print results (squares)
n9 = n9 + 1: GoSub 2645 'Print results (lines)
End If
Erase b1, b, c: GoTo 1000
End If
b(c(10)) = 0: c(10) = 0
100 b(c(8)) = 0: c(8) = 0
80 b(c(9)) = 0: c(9) = 0
90 b(c(7)) = 0: c(7) = 0
70 Next j7
b(c(6)) = 0: c(6) = 0
60 b(c(3)) = 0: c(3) = 0
30 b(c(5)) = 0: c(5) = 0
50 b(c(2)) = 0: c(2) = 0
20 Next j2
b(c(4)) = 0: c(4) = 0
40 b(c(1)) = 0: c(1) = 0
10 Next j1
Erase b1, b, c
1000 Next j100
t2 = Timer
t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
y = MsgBox(t10, 0, "Routine Priem9a2")
End
' Complete Border with remaining segments (3 x 1)
2000 fl1 = 1
For j15 = m1 To m2
If b1(a1(j15)) = 0 Then GoTo 150
If b(a1(j15)) = 0 Then b(a1(j15)) = a1(j15): c(15) = a1(j15) Else GoTo 150
a(15) = a1(j15)
a(18) = Pr3 - a(15): If b(a(18)) = 0 Then b(a(18)) = a(18): c(18) = a(18) Else GoTo 180
For j16 = m1 To m2
If b1(a1(j16)) = 0 Then GoTo 160
If b(a1(j16)) = 0 Then b(a1(j16)) = a1(j16): c(16) = a1(j16) Else GoTo 160
a(16) = a1(j16)
a(19) = Pr3 - a(16): If b(a(19)) = 0 Then b(a(19)) = a(19): c(19) = a(19) Else GoTo 190
a(17) = s3 - a(16) - a(15)
If a(17) < a1(m1) Or a(17) > a1(m2) Then GoTo 170:
If b1(a(17)) = 0 Then GoTo 170
If b(a(17)) = 0 Then b(a(17)) = a(17): c(17) = a(17) Else GoTo 170
a(20) = Pr3 - a(17): If b(a(20)) = 0 Then b(a(20)) = a(20): c(20) = a(20) Else GoTo 200
n10 = n10 + 1
If n10 = 3 Then
a9(4) = a(15): a9(5) = a(16): a9(6) = a(17):
a9(76) = a(18): a9(77) = a(19): a9(78) = a(20):
n32 = 20: GoSub 950 'Remove used primes from available primes
Erase b, c: GoTo 150
Else
a9(28) = a(18): a9(36) = a(15):
a9(37) = a(19): a9(45) = a(16):
a9(46) = a(20): a9(54) = a(17):
Return
End If
b(c(20)) = 0: c(20) = 0
200 b(c(17)) = 0: c(17) = 0
170 b(c(19)) = 0: c(19) = 0
190 b(c(16)) = 0: c(16) = 0
160 Next j16
b(c(18)) = 0: c(18) = 0
180 b(c(15)) = 0: c(15) = 0
150 Next j15
fl1 = 0
Return
' Double Check Identical Numbers a9()
800 fl1 = 1
For i1 = 1 To 81
a20 = a9(i1): If a20 = 0 Then GoTo 810
For i2 = (1 + i1) To 81
If a20 = a9(i2) Then fl1 = 0: Return
Next i2
810 Next i1
Return
' Remove used pairs from b1()
950 For i1 = 1 To n32
b1(a(i1)) = 0
Next i1
Return
' Print results (selected numbers)
2645 For i1 = 1 To 81
Cells(n9, i1).Value = a9(i1)
Next i1
Cells(n9, 82).Select
Cells(n9, 82).Value = s1
Cells(n9, 83).Value = Rcrd1a
Return
' Print results (squares)
2650 n2 = n2 + 1
If n2 = 3 Then
n2 = 1: k1 = k1 + 10: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 10
End If
Cells(k1, k2 + 1).Select
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = "MC = " + CStr(s1)
i3 = 0
For i1 = 1 To 9
For i2 = 1 To 9
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a9(i3)
Next i2
Next i1
Return
End Sub