Vorige Pagina About the Author

' Generates Prime Number Bordered Magic Squares (9 x 9)
' Split Border Lines, Center Square order 5

' Tested with Office 2007 under Windows 7

Sub Priem9c()

    Dim a1(2448), a(169), a9(81), b1(43300), b(43300), c(81)
 
    y = MsgBox("Locked", vbCritical, "Routine Priem9c")
    End

    Sheets("Klad1").Select

    n5 = 0: n9 = 0: k1 = 1: k2 = 1
    ShtNm1 = "Pairs7"
    ShtNm2 = "Lines5"
    
    t1 = Timer

    For j100 = 2 To 1358
    
'       Start Reading Data ShtNm2
    
        Rcrd1a = Sheets(ShtNm2).Cells(j100, 27).Value
        MC5 = Sheets(ShtNm2).Cells(j100, 26).Value

'       Read Prime Numbers From Sheet ShtNm1

        Pr3 = Sheets(ShtNm1).Cells(Rcrd1a, 1).Value      'PairSum
        s1 = Sheets(ShtNm1).Cells(Rcrd1a, 5).Value       'MC3
        Cntr3 = Sheets(ShtNm1).Cells(Rcrd1a, 6).Value    'Center Element
        s5 = 5 * Cntr3                                   'MC5
        s9 = 9 * Cntr3                                   'MC9
        nVar = Sheets(ShtNm1).Cells(Rcrd1a, 9).Value

        If nVar < 81 Then GoTo 1000

        If MC5 <> s5 Then
                y = MsgBox("Conflict in Data", vbCritical, "Read " + ShtNm2)
                End
        End If

        Erase b1
        For j1 = 1 To nVar
            x = Sheets(ShtNm1).Cells(Rcrd1a, 9 + j1).Value
            b1(x) = x
        Next j1
        pMax = Sheets(ShtNm1).Cells(Rcrd1a, 9 + nVar).Value
    
'       Read Center Square 5 x 5
        
        For i1 = 1 To 25
            a(i1) = Sheets(ShtNm2).Cells(j100, i1).Value
        Next i1
        n10 = 0: n53 = 25: GoSub 910    'Remove used primes from available primes
        
        Erase a9
        
        a9(21) = a(1):  a9(22) = a(2):  a9(23) = a(3):  a9(24) = a(4):  a9(25) = a(5):
        a9(30) = a(6):  a9(31) = a(7):  a9(32) = a(8):  a9(33) = a(9):  a9(34) = a(10):
        a9(39) = a(11): a9(40) = a(12): a9(41) = a(13): a9(42) = a(14): a9(43) = a(15):
        a9(48) = a(16): a9(49) = a(17): a9(50) = a(18): a9(51) = a(19): a9(52) = a(20):
        a9(57) = a(21): a9(58) = a(22): a9(59) = a(23): a9(60) = a(24): a9(61) = a(25):
        
        Erase a

'       Restore available pairs in a1()

        n10 = 0
        For j1 = 1 To pMax
            If b1(j1) <> 0 Then
                n10 = n10 + 1
                a1(n10) = b1(j1)
            End If
        Next j1
        m1 = 1: m2 = n10: n10 = 0
        If a1(1) = 1 Then m1 = 2: m2 = m2 - 1

'       Determine Magic Squares and Rectangles

                  GoSub 2000                          'Determine 4 Corner Squares
                  If n10 < 4 Then GoTo 950

                  GoSub 3000                          'Determine 4 Border Sections
                  If n10 < 8 Then GoTo 950
                             
                  GoSub 800                           'Double Check Identical Integers a9()
                  If fl1 = 1 Then
                        n9 = n9 + 1: GoSub 650        'Print Composed Squares a9()
                  End If

950  Erase b1, b, c
1000 Next j100

    t2 = Timer
    
    t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
    y = MsgBox(t10, 0, "Routine Priem9c")

End

'   Determine Corner Squares 3 x 3

2000 fl1 = 1

For j9 = m1 To m2                                                     'a(9)
If b1(a1(j9)) = 0 Then GoTo 90
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 90
a(9) = a1(j9)

For j8 = m1 To m2                                                     'a(8)
If b1(a1(j8)) = 0 Then GoTo 80
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 80
a(8) = a1(j8)

    a(7) = s1 - a(8) - a(9):
    If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 70:
    If b1(a(7)) = 0 Then GoTo 70
    If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
    
    a(6) = 4 * s1 / 3 - a(8) - 2 * a(9):
    If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 60:
    If b1(a(6)) = 0 Then GoTo 60
    If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60

    a(5) = s1 / 3:
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50:
    If b1(a(5)) = 0 Then GoTo 50
    If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
    
    a(4) = -2 * s1 / 3 + a(8) + 2 * a(9):
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40:
    If b1(a(4)) = 0 Then GoTo 40
    If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
    
    a(3) = -s1 / 3 + a(8) + a(9):
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30:
    If b1(a(3)) = 0 Then GoTo 30
    If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
    
    a(2) = 2 * s1 / 3 - a(8):
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20:
    If b1(a(2)) = 0 Then GoTo 20
    If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
    
    a(1) = 2 * s1 / 3 - a(9):
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10:
    If b1(a(1)) = 0 Then GoTo 10
    If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
                             
                      n10 = n10 + 1
                              
                      If n10 < 4 Then
                             GoSub 750                              'Transform and Assign Corner Squares
                             n53 = 9: GoSub 910                     'Remove used primes a() from available primes b1()
                             Erase b, c: GoTo 90
                      Else
                             GoSub 750                              'Transform and Assign Corner Squares
                             n53 = 9: GoSub 910                     'Remove used primes a() from available primes b1()
                      End If
                      If n10 = 4 Then Erase b, c: Return            'Only four squares required
                          
5  b(c(1)) = 0: c(1) = 0
10 b(c(2)) = 0: c(2) = 0
20 b(c(3)) = 0: c(2) = 0
30 b(c(4)) = 0: c(4) = 0
40 b(c(5)) = 0: c(5) = 0
50 b(c(6)) = 0: c(6) = 0
60 b(c(7)) = 0: c(7) = 0
70 b(c(8)) = 0: c(8) = 0
80 Next j8
    
    b(c(9)) = 0: c(9) = 0
90 Next j9

    fl1 = 0
    
    Return

'   Determine Border Sections 2 x 3

3000 fl1 = 1

    For j1 = m1 To m2                                          'a(1)
    If b1(a1(j1)) = 0 Then GoTo 3010
    If b(a1(j1)) = 0 Then b(a1(j1)) = a1(j1): c(1) = a1(j1) Else GoTo 3010
    a(1) = a1(j1)

    a(4) = Pr3 - a(1): If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 3040

    For j2 = m1 To m2                                          'a(2)
    If b1(a1(j2)) = 0 Then GoTo 3020
    If b(a1(j2)) = 0 Then b(a1(j2)) = a1(j2): c(2) = a1(j2) Else GoTo 3020
    a(2) = a1(j2)

    a(5) = Pr3 - a(2): If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 3050

    a(3) = s1 - a(2) - a(1)
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 3030
    If b1(a(3)) = 0 Then GoTo 3030
    If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 3030

    a(6) = Pr3 - a(3): If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 3060

                     n10 = n10 + 1
                              
                      If n10 < 8 Then
                             GoSub 750                              'Transform and Assign Border Sections
                             n53 = 6: GoSub 910                     'Remove used primes a() from available primes b1()
                             Erase b, c: GoTo 3010
                      Else
                             GoSub 750                              'Transform and Assign Border Sections
                             n53 = 6: GoSub 910                     'Remove used primes a() from available primes b1()
                      End If
                      If n10 = 8 Then Erase b, c: Return            'Only four Border Sections required

     b(c(6)) = 0: c(6) = 0
3060 b(c(3)) = 0: c(3) = 0
3030 b(c(5)) = 0: c(5) = 0
3050 b(c(2)) = 0: c(2) = 0
3020 Next j2

     b(c(4)) = 0: c(4) = 0
3040 b(c(1)) = 0: c(1) = 0
3010 Next j1

    fl1 = 0
    
    Return

'   Print results (squares)

650  n5 = n5 + 1
     If n5 = 3 Then
         n5 = 1: k1 = k1 + 10: k2 = 1
     Else
         If n9 > 1 Then k2 = k2 + 10
     End If
     
     Cells(k1, k2 + 1).Select
     Cells(k1, k2 + 1).Font.Color = -4165632
     Cells(k1, k2 + 1).Value = "MC = " + CStr(s9)

     i3 = 0
     For i1 = 1 To 9
         For i2 = 1 To 9
             i3 = i3 + 1
             Cells(k1 + i1, k2 + i2).Value = a9(i3)
         Next i2
     Next i1
    
     Return

'    Transform and Assign Corner Squares and Border Sections

750  Select Case n10

     Case 1: 'Square 1, Left  Top
     
     a9(1) = a(9):  a9(2) = a(7):  a9(3) = a(8):
     a9(10) = a(3): a9(11) = a(1): a9(12) = a(2):
     a9(19) = a(6): a9(20) = a(4):
     
     Case 2: 'Square 2, Right Top

     a9(7) = a(8):  a9(8) = a(9):  a9(9) = a(7):
     a9(16) = a(2): a9(17) = a(3): a9(18) = a(1):
                   a9(26) = a(6): a9(27) = a(4):

     Case 3: 'Square 3, Right Bottom
     
     a9(62) = a(6): a9(63) = a(4):
     a9(70) = a(8): a9(71) = a(9): a9(72) = a(7):
     a9(79) = a(2): a9(80) = a(3): a9(81) = a(1):
     
     Case 4: 'Square 4, Left  Bottom

     a9(55) = a(6): a9(56) = a(4):
     a9(64) = a(9): a9(65) = a(7): a9(66) = a(8):
     a9(73) = a(3): a9(74) = a(1): a9(75) = a(2):

     Case 5: 'Section 1, Top
     
     a9(4) = a(1):  a9(5) = a(2):  a9(6) = a(3):
     a9(13) = a(4): a9(14) = a(5): a9(15) = a(6):
    
     Case 6: 'Section 2, Right

     a9(35) = a(1): a9(36) = a(4):
     a9(44) = a(2): a9(45) = a(5):
     a9(53) = a(3): a9(54) = a(6):

     Case 7: 'Section 3, Bottom
     
     a9(67) = a(1): a9(68) = a(2): a9(69) = a(3):
     a9(76) = a(4): a9(77) = a(5): a9(78) = a(6):
     
     Case 8: 'Section 4, Left

     a9(28) = a(1): a9(29) = a(4):
     a9(37) = a(2): a9(38) = a(5):
     a9(46) = a(3): a9(47) = a(6):

     End Select

     Return

'   Double Check Identical Numbers a9()

800 fl1 = 1
    For i1 = 1 To 81
       a20 = a9(i1): If a20 = 0 Then GoTo 810
       For i2 = (1 + i1) To 81
           If a20 = a9(i2) Then fl1 = 0: Return
       Next i2
810 Next i1
    Return
    
'    Remove used primes a() from available primes b1(), Reassign Center Element

910  For i1 = 1 To n53
         b1(a(i1)) = 0
     Next i1
     If n10 < 4 Then b1(Cntr3) = Cntr3    'Reassign Center Element
     Return
     
End Sub

Vorige Pagina About the Author