Vorige Pagina About the Author

' Generates Prime Number Composed Magic Squares of order 9
' Associated Corner Squares, Composed Rectangles

' Tested with Office 2007 under Windows 7

Sub Priem9g2()

    Dim a1(2448), a(169), a9(81), b1(43300), b(43300), c(81)
 
    y = MsgBox("Locked", vbCritical, "Routine Priem9g2")
    End

    Sheets("Klad1").Select

    n5 = 0: n9 = 0: k1 = 1: k2 = 1:
    ShtNm1 = "Pairs7"
    ShtNm2 = "Lines6"
    
    t1 = Timer

    For j100 = 2 To 83
        
'       Start Reading Data ShtNm2
    
        Rcrd1a = Sheets(ShtNm2).Cells(j100, 38).Value
        MC6 = Sheets(ShtNm2).Cells(j100, 37).Value

'       Read Prime Numbers From Sheet ShtNm1

        Pr3 = Sheets(ShtNm1).Cells(Rcrd1a, 1).Value
        s1 = Sheets(ShtNm1).Cells(Rcrd1a, 5).Value       'MC3
        Cntr3 = Sheets(ShtNm1).Cells(Rcrd1a, 6).Value    'Center Element
        s6 = 6 * Cntr3                                   'MC6
        s9 = 9 * Cntr3                                   'MC9
        nVar = Sheets(ShtNm1).Cells(Rcrd1a, 9).Value

        If nVar < 81 Then GoTo 1000

        If MC6 <> s6 Then
                y = MsgBox("Conflict in Data", vbCritical, "Read " + ShtNm2)
                End
        End If

        Erase b1
        For j1 = 1 To nVar
            x = Sheets(ShtNm1).Cells(Rcrd1a, 9 + j1).Value
            b1(x) = x
        Next j1
        pMax = Sheets(ShtNm1).Cells(Rcrd1a, 9 + nVar).Value
    
'       Read (Associated) Magic Square 6 x 6
        
        For i1 = 1 To 36
            a(i1) = Sheets(ShtNm2).Cells(j100, i1).Value
        Next i1
        n32 = 36: GoSub 950   'Remove used primes from available primes
        
        Erase a9
        
        a9(31) = a(1):  a9(32) = a(2):  a9(33) = a(3):  a9(34) = a(4):  a9(35) = a(5):  a9(36) = a(6):
        a9(40) = a(7):  a9(41) = a(8):  a9(42) = a(9):  a9(43) = a(10): a9(44) = a(11): a9(45) = a(12):
        a9(49) = a(13): a9(50) = a(14): a9(51) = a(15): a9(52) = a(16): a9(53) = a(17): a9(54) = a(18):
        a9(58) = a(19): a9(59) = a(20): a9(60) = a(21): a9(61) = a(22): a9(62) = a(23): a9(63) = a(24):
        a9(67) = a(25): a9(68) = a(26): a9(69) = a(27): a9(70) = a(28): a9(71) = a(29): a9(72) = a(30):
        a9(76) = a(31): a9(77) = a(32): a9(78) = a(33): a9(79) = a(34): a9(80) = a(35): a9(81) = a(36):
        
        Erase a

'       Reassign Center
        
        b1(Cntr3) = Cntr3

'       Restore available pairs in a1()

        n10 = 0
        For j1 = 1 To pMax
            If b1(j1) <> 0 Then
                n10 = n10 + 1
                a1(n10) = b1(j1)
            End If
        Next j1
        m1 = 1: m2 = n10
        If a1(1) = 1 Then m1 = 2: m2 = m2 - 1

'       Determine Magic Square Order 3

For j9 = m1 To m2                                                     'a(9)
If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 90
a(9) = a1(j9)

For j8 = m1 To m2                                                     'a(8)
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 80
a(8) = a1(j8)

    a(7) = s1 - a(8) - a(9):
    If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 70:
    If b1(a(7)) = 0 Then GoTo 70
    If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 70
    
    a(6) = 4 * s1 / 3 - a(8) - 2 * a(9):
    If a(6) < a1(m1) Or a(6) > a1(m2) Then GoTo 60:
    If b1(a(6)) = 0 Then GoTo 60
    If b(a(6)) = 0 Then b(a(6)) = a(6): c(6) = a(6) Else GoTo 60

    a(5) = s1 / 3:
    If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50:
    If b1(a(5)) = 0 Then GoTo 50
    If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
    
    a(4) = -2 * s1 / 3 + a(8) + 2 * a(9):
    If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40:
    If b1(a(4)) = 0 Then GoTo 40
    If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
    
    a(3) = -s1 / 3 + a(8) + a(9):
    If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30:
    If b1(a(3)) = 0 Then GoTo 30
    If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
    
    a(2) = 2 * s1 / 3 - a(8):
    If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20:
    If b1(a(2)) = 0 Then GoTo 20
    If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
    
    a(1) = 2 * s1 / 3 - a(9):
    If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10:
    If b1(a(1)) = 0 Then GoTo 10
    If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
                          
    a9(1) = a(1):   a9(2) = a(2):   a9(3) = a(3):
    a9(10) = a(4):  a9(11) = a(5):  a9(12) = a(6):
    a9(19) = a(7):  a9(20) = a(8):  a9(21) = a(9):


'                         Remove used primes a() from available primes b1()

                          n32 = 9: GoSub 950
                          Erase b, c: GoTo 2000
                          
                          
5  b(c(1)) = 0: c(1) = 0
10 b(c(2)) = 0: c(2) = 0
20 b(c(3)) = 0: c(2) = 0
30 b(c(4)) = 0: c(4) = 0
40 b(c(5)) = 0: c(5) = 0
50 b(c(6)) = 0: c(6) = 0
60 b(c(7)) = 0: c(7) = 0
70 b(c(8)) = 0: c(8) = 0
80 Next j8
    
    b(c(9)) = 0: c(9) = 0
90 Next j9

   Erase b1, b, c: GoTo 1000                           'Not Found, Next j100
     
2000                                                   'Continue
     
'   Check Main Diagonal, Generate Associated Magic Rectangles 3 x 6
     
    n10 = 0
     
    For j9 = m1 To m2                                                       'a9(9)   Main Diagonal
    If b1(a1(j9)) = 0 Then GoTo 2090
    If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 2090
    a9(9) = a1(j9)
     
    For j17 = m1 To m2                                                      'a9(17)
    If b1(a1(j17)) = 0 Then GoTo 2170
    If b(a1(j17)) = 0 Then b(a1(j17)) = a1(j17): c(17) = a1(j17) Else GoTo 2170
    a9(17) = a1(j17)
    
    For j25 = m1 To m2                                                      'a9(25)
    If b1(a1(j25)) = 0 Then GoTo 2250
    If b(a1(j25)) = 0 Then b(a1(j25)) = a1(j25): c(25) = a1(j25) Else GoTo 2250
    a9(25) = a1(j25)
    
    For j8 = m1 To m2                                                       'a(8)    Square 1
    If b1(a1(j8)) = 0 Then GoTo 2080
    If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 2080
    a9(8) = a1(j8)
    
    a9(7) = s6 / 2 - a9(8) - a9(9)
    If a9(7) < a1(m1) Or a9(7) > a1(m2) Then GoTo 2070
    If b1(a9(7)) = 0 Then GoTo 2070
    If b(a9(7)) = 0 Then b(a9(7)) = a9(7): c(7) = a9(7) Else GoTo 2070
    
    a9(16) = -a9(25) + a9(9) + a9(8)
    If a9(16) < a1(m1) Or a9(16) > a1(m2) Then GoTo 2160
    If b1(a9(16)) = 0 Then GoTo 2160
    If b(a9(16)) = 0 Then b(a9(16)) = a9(16): c(16) = a9(16) Else GoTo 2160
    
    a9(18) = s6 / 2 + a9(25) - a9(17) - a9(9) - a9(8)
    If a9(18) < a1(m1) Or a9(18) > a1(m2) Then GoTo 2180
    If b1(a9(18)) = 0 Then GoTo 2180
    If b(a9(18)) = 0 Then b(a9(18)) = a9(18): c(18) = a9(18) Else GoTo 2180
    
    a9(26) = s6 / 2 - a9(17) - a9(8)
    If a9(26) < a1(m1) Or a9(26) > a1(m2) Then GoTo 2260
    If b1(a9(26)) = 0 Then GoTo 2260
    If b(a9(26)) = 0 Then b(a9(26)) = a9(26): c(26) = a9(26) Else GoTo 2260
    
    a9(27) = -a9(25) + a9(17) + a9(8)
    If a9(27) < a1(m1) Or a9(27) > a1(m2) Then GoTo 2270
    If b1(a9(27)) = 0 Then GoTo 2270
    If b(a9(27)) = 0 Then b(a9(27)) = a9(27): c(27) = a9(27) Else GoTo 2270
    
    For j57 = m1 To m2                                                       'a9(57)
    If b1(a1(j57)) = 0 Then GoTo 2570
    If b(a1(j57)) = 0 Then b(a1(j57)) = a1(j57): c(57) = a1(j57) Else GoTo 2570
    a9(57) = a1(j57)

    For j65 = m1 To m2                                                       'a9(65)
    If b1(a1(j65)) = 0 Then GoTo 2650
    If b(a1(j65)) = 0 Then b(a1(j65)) = a1(j65): c(65) = a1(j65) Else GoTo 2650
    a9(65) = a1(j65)

    a9(73) = s9 - a9(65) - a9(57) - a9(49) - a9(41) - a9(33) - a9(25) - a9(17) - a9(9)
    If a9(73) < a1(m1) Or a9(73) > a1(m2) Then GoTo 2730:
    If b1(a9(73)) = 0 Then GoTo 2730
    If b(a9(73)) = 0 Then b(a9(73)) = a9(73): c(73) = a9(73) Else GoTo 2730

    For j56 = m1 To m2                                                       'a9(56)     Square 2
    If b1(a1(j56)) = 0 Then GoTo 2560
    If b(a1(j56)) = 0 Then b(a1(j56)) = a1(j56): c(56) = a1(j56) Else GoTo 2560
    a9(56) = a1(j56)

    a9(55) = s6 / 2 - a9(57) - a9(56)
    If a9(55) < a1(m1) Or a9(55) > a1(m2) Then GoTo 2550
    If b1(a9(55)) = 0 Then GoTo 2550
    If b(a9(55)) = 0 Then b(a9(55)) = a9(55): c(55) = a9(55) Else GoTo 2550
    
    a9(64) = -a9(73) + a9(57) + a9(56)
    If a9(64) < a1(m1) Or a9(64) > a1(m2) Then GoTo 2640
    If b1(a9(64)) = 0 Then GoTo 2640
    If b(a9(64)) = 0 Then b(a9(64)) = a9(64): c(64) = a9(64) Else GoTo 2640
    
    a9(66) = s6 / 2 + a9(73) - a9(65) - a9(57) - a9(56)
    If a9(66) < a1(m1) Or a9(66) > a1(m2) Then GoTo 2660
    If b1(a9(66)) = 0 Then GoTo 2660
    If b(a9(66)) = 0 Then b(a9(66)) = a9(66): c(66) = a9(66) Else GoTo 2660
    
    a9(74) = s6 / 2 - a9(65) - a9(56)
    If a9(74) < a1(m1) Or a9(74) > a1(m2) Then GoTo 2740
    If b1(a9(74)) = 0 Then GoTo 2740
    If b(a9(74)) = 0 Then b(a9(74)) = a9(74): c(74) = a9(74) Else GoTo 2740
    
    a9(75) = -a9(73) + a9(65) + a9(56)
    If a9(75) < a1(m1) Or a9(75) > a1(m2) Then GoTo 2750
    If b1(a9(75)) = 0 Then GoTo 2750
    If b(a9(75)) = 0 Then b(a9(75)) = a9(75): c(75) = a9(75) Else GoTo 2750


'                         Remove used primes a9() from available primes b1()

                          n32 = 81: GoSub 900
                          Erase b, c: GoTo 3000


     b(c(75)) = 0: c(75) = 0
2750 b(c(74)) = 0: c(74) = 0
2740 b(c(66)) = 0: c(66) = 0
2660 b(c(64)) = 0: c(64) = 0
2640 b(c(55)) = 0: c(55) = 0
2550 b(c(56)) = 0: c(56) = 0
2560 Next j56

      b(c(73)) = 0: c(73) = 0
2730  b(c(65)) = 0: c(65) = 0
2650  Next j65

      b(c(57)) = 0: c(57) = 0
2570  Next j57

      b(c(27)) = 0: c(27) = 0
2270  b(c(26)) = 0: c(26) = 0
2260  b(c(18)) = 0: c(18) = 0
2180  b(c(16)) = 0: c(16) = 0
2160  b(c(7)) = 0: c(7) = 0
2070  b(c(8)) = 0: c(8) = 0
2080  Next j8

      b(c(25)) = 0: c(25) = 0
2250  Next j25

      b(c(17)) = 0: c(17) = 0
2170  Next j17

      b(c(9)) = 0: c(9) = 0
2090  Next j9
     
     Erase b1, b, c: GoTo 1000                           'Not Found, Next j100
     
'    Determine 2 Border Squares

3000 Erase a: n10 = 0                                    'Continue

     For j9 = m1 To m2                                                     'a(9)
     If b1(a1(j9)) = 0 Then GoTo 3090
     If b(a1(j9)) = 0 Then b(a1(j9)) = a1(j9): c(9) = a1(j9) Else GoTo 3090
     a(9) = a1(j9)
 
     For j8 = m1 To m2                                                     'a(8)
     If b1(a1(j8)) = 0 Then GoTo 3080
     If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 3080
     a(8) = a1(j8)

     a(7) = s6 / 2 - a(8) - a(9):
     If a(7) < a1(m1) Or a(7) > a1(m2) Then GoTo 3070
     If b1(a(7)) = 0 Then GoTo 3070
     If b(a(7)) = 0 Then b(a(7)) = a(7): c(7) = a(7) Else GoTo 3070

     For j6 = m1 To m2                                                     'a(6)
     If b1(a1(j6)) = 0 Then GoTo 3060
     If b(a1(j6)) = 0 Then b(a1(j6)) = a1(j6): c(6) = a1(j6) Else GoTo 3060
     a(6) = a1(j6)

     a(3) = -a(6) + a(7) + a(8)
     If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 3030:
     If b1(a(3)) = 0 Then GoTo 3030
     If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 3030

     For j5 = m1 To m2                                                     'a(5)
     If b1(a1(j5)) = 0 Then GoTo 3050
     If b(a1(j5)) = 0 Then b(a1(j5)) = a1(j5): c(5) = a1(j5) Else GoTo 3050
     a(5) = a1(j5)

     a(4) = s6 / 2 - a(5) - a(6)
     If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 3040
     If b1(a(4)) = 0 Then GoTo 3040
     If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 3040
     
     a(2) = s6 / 2 - a(5) - a(8)
     If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 3020
     If b1(a(2)) = 0 Then GoTo 3020
     If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 3020
     
     a(1) = a(5) + a(6) - a(7)
     If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 3010
     If b1(a(1)) = 0 Then GoTo 3010
     If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 3010
         
     n10 = n10 + 1
     If n10 = 1 Then

            a9(4) = a(1):  a9(5) = a(2):  a9(6) = a(3):
            a9(13) = a(4): a9(14) = a(5): a9(15) = a(6):
            a9(22) = a(7): a9(23) = a(8): a9(24) = a(9):

            n32 = 9: GoSub 950                     'Remove used primes a() from available primes b1()
            Erase b, c: GoTo 3090

     Else

            a9(28) = a(1):  a9(29) = a(2):  a9(30) = a(3):
            a9(37) = a(4):  a9(38) = a(5):  a9(39) = a(6):
            a9(46) = a(7):  a9(47) = a(8):  a9(48) = a(9):

            GoSub 800                              'Double Check Identical Integers a9()
            If fl1 = 1 Then
                   n9 = n9 + 1: GoSub 650          'Print Composed Squares
            End If
            Erase b1, b, c: GoTo 1000

     End If

     b(c(1)) = 0: c(1) = 0
3010 b(c(2)) = 0: c(2) = 0
3020 b(c(4)) = 0: c(4) = 0
3040 b(c(5)) = 0: c(5) = 0
3050 Next j5

     b(c(3)) = 0: c(3) = 0
3030 b(c(6)) = 0: c(6) = 0
3060 Next j6

     b(c(7)) = 0: c(7) = 0
3070 b(c(8)) = 0: c(8) = 0
3080 Next j8
    
     b(c(9)) = 0: c(9) = 0
3090 Next j9
     
     Erase b1, b, c
1000 Next j100

    t2 = Timer
    
    t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
    y = MsgBox(t10, 0, "Routine Priem9g2")

End

'   Print results (squares)

650  n5 = n5 + 1
     If n5 = 3 Then
         n5 = 1: k1 = k1 + 10: k2 = 1
     Else
         If n9 > 1 Then k2 = k2 + 10
     End If
     
     Cells(k1, k2 + 1).Select
     Cells(k1, k2 + 1).Font.Color = -4165632
     Cells(k1, k2 + 1).Value = "MC = " + CStr(s9)

     i3 = 0
     For i1 = 1 To 9
         For i2 = 1 To 9
             i3 = i3 + 1
             Cells(k1 + i1, k2 + i2).Value = a9(i3)
         Next i2
     Next i1
    
     Return

'   Double Check Identical Numbers a9()

800 fl1 = 1
    For j1 = 1 To 81
       a20 = a9(j1): If a20 = 0 Then GoTo 810
       For j2 = (1 + j1) To 81
           If a20 = a9(j2) Then fl1 = 0: Return
       Next j2
810 Next j1
    Return

'   Remove used pairs from b1()

900 For i1 = 1 To n32
        b1(a9(i1)) = 0
    Next i1
    Return

'   Remove used pairs from b1()

950 For i1 = 1 To n32
        b1(a(i1)) = 0
    Next i1
    Return

End Sub

Vorige Pagina About the Author