' Constructs 10 x 10 Composed Magic Squares for Prime Numbers (Part 2)
' Four Magic Rectangle (3 x 4)
' Tested with Office 2007 under Windows 7
Sub Priem10b2()
Dim a1(1260), b1(187141), b(187141), c(36), a(24), a10(100)
y = MsgBox("Locked", vbCritical, "Routine Priem10b2")
End
n1 = 0: n9 = 0: n10 = 0: k1 = 1: k2 = 1
ShtNm1 = "Priem2"
Sheets("Klad1").Select
t1 = Timer
' Generate Squares
For j100 = 2 To 30
s10 = Sheets("Lines10").Cells(j100, 101).Value 'MC10
s3 = 3 * s10 / 10
s4 = 4 * s10 / 10
m1 = Sheets("Lines10").Cells(j100, 104).Value
m2 = Sheets("Lines10").Cells(j100, 105).Value
For i1 = 1 To m2
a1(i1) = Sheets(ShtNm1).Cells(i1, 3).Value
Next i1
pmax = a1(m2)
Erase b1
For i1 = m1 To m2
b1(a1(i1)) = a1(i1)
Next i1
' Read Magic Center and Corner Squares
' Assign to a10() and and Remove from b1()
Erase a10
For i1 = 1 To 100
a10(i1) = Sheets("Lines10").Cells(j100, i1).Value
b1(a10(i1)) = 0
Next i1
' Restore available pairs in a1()
Erase a1: n10 = 0
For j1 = 1 To pmax
If b1(j1) <> 0 Then
n10 = n10 + 1
a1(n10) = b1(j1)
End If
Next j1
m1 = 1: m2 = n10: n10 = 0
' Generate Magic Rectangles (3 x 4)
For j12 = m1 To m2 'a(12)
If b1(a1(j12)) = 0 Then GoTo 120
If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 120
a(12) = a1(j12)
For j11 = m1 To m2 'a(11)
If b1(a1(j11)) = 0 Then GoTo 110
If b(a1(j11)) = 0 Then b(a1(j11)) = a1(j11): c(11) = a1(j11) Else GoTo 110
a(11) = a1(j11)
For j10 = m1 To m2 'a(10)
If b1(a1(j10)) = 0 Then GoTo 100
If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 100
a(10) = a1(j10)
a(9) = s4 - a(10) - a(11) - a(12)
If a(9) < a1(m1) Or a(9) > a1(m2) Then GoTo 90:
If b1(a(9)) = 0 Then GoTo 90
If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 90
For j8 = m1 To m2 'a(8)
If b1(a1(j8)) = 0 Then GoTo 80
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 80
a(8) = a1(j8)
a(4) = -s4 / 4 - a(8) + a(9) + a(10) + a(11)
If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40:
If b1(a(4)) = 0 Then GoTo 40
If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
For j7 = m1 To m2 'a(7)
If b1(a1(j7)) = 0 Then GoTo 70
If b(a1(j7)) = 0 Then b(a1(j7)) = a1(j7): c(7) = a1(j7) Else GoTo 70
a(7) = a1(j7)
a(3) = s3 - a(7) - a(11)
If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30:
If b1(a(3)) = 0 Then GoTo 30
If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
For j6 = m1 To m2 'a(6)
If b1(a1(j6)) = 0 Then GoTo 60
If b(a1(j6)) = 0 Then b(a1(j6)) = a1(j6): c(6) = a1(j6) Else GoTo 60
a(6) = a1(j6)
a(5) = s4 - a(6) - a(7) - a(8)
If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50:
If b1(a(5)) = 0 Then GoTo 50
If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
a(2) = s3 - a(6) - a(10)
If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20:
If b1(a(2)) = 0 Then GoTo 20
If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
a(1) = -s4 / 4 + a(6) + a(7) + a(8) - a(9)
If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10:
If b1(a(1)) = 0 Then GoTo 10
If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
n10 = n10 + 1
Select Case n10
Case 1:
GoSub 750: GoSub 900 'Assign Rectangle 1, Remove used primes
Erase b, c: GoTo 120
Case 2:
GoSub 750: GoSub 900 'Assign Rectangle 2, Remove used primes
Erase b, c: GoTo 120
Case 3:
GoSub 750: GoSub 900 'Assign Rectangle 3, Remove used primes
Erase b, c: GoTo 120
Case 4:
GoSub 750 'Assign Rectangle 4
GoSub 850 'Double Check Identical Integers a10()
If fl1 = 1 Then
' n9 = n9 + 1: GoSub 640 'Print results (lines)
n9 = n9 + 1: GoSub 660 'Print results (squares)
End If
Erase b1, b, c: GoTo 1000 'Print only first square
End Select
b(c(24)) = 0: c(24) = 0
240 b(c(1)) = 0: c(1) = 0
10 b(c(23)) = 0: c(23) = 0
230 b(c(2)) = 0: c(2) = 0
20 b(c(20)) = 0: c(20) = 0
200 b(c(5)) = 0: c(5) = 0
50 b(c(19)) = 0: c(19) = 0
190 b(c(6)) = 0: c(6) = 0
60 Next j6
b(c(22)) = 0: c(22) = 0
220 b(c(3)) = 0: c(3) = 0
30 b(c(18)) = 0: c(18) = 0
180 b(c(7)) = 0: c(7) = 0
70 Next j7
b(c(21)) = 0: c(21) = 0
210 b(c(4)) = 0: c(4) = 0
40 b(c(17)) = 0: c(17) = 0
170 b(c(8)) = 0: c(8) = 0
80 Next j8
b(c(16)) = 0: c(16) = 0
160 b(c(9)) = 0: c(9) = 0
90 b(c(15)) = 0: c(15) = 0
150 b(c(10)) = 0: c(10) = 0
100 Next j10
b(c(14)) = 0: c(14) = 0
140 b(c(11)) = 0: c(11) = 0
110 Next j11
b(c(13)) = 0: c(13) = 0
130 b(c(12)) = 0: c(12) = 0
120 Next j12
' Not found
GoSub 850 'Double Check Identical Integers
If fl1 = 1 Then
n9 = n9 + 1: GoSub 660 'Print Composed Squares
End If
Erase b, c
1000 n10 = 0
Next j100
t2 = Timer
t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
y = MsgBox(t10, 0, "Routine Priem10b2")
End
' Print results (selected numbers)
640 Cells(n9, 9).Select
For i1 = 1 To 100
Cells(n9, i1).Value = a10(i1)
Next i1
Cells(n9, 145).Value = s10
Return
' Print results (squares 10 x 10)
660 n1 = n1 + 1
If n1 = 2 Then
n1 = 1: k1 = k1 + 11: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 11
End If
Cells(k1, k2 + 1).Select
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = CStr(s10)
i3 = 0
For i1 = 1 To 10
For i2 = 1 To 10
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a10(i3)
Next i2
Next i1
Return
' Exclude solutions with identical numbers a10()
850 fl1 = 1
For j1 = 1 To 100
a20 = a10(j1): If a20 = 0 Then GoTo 860
For j2 = (1 + j1) To 100
If a20 = a10(j2) Then fl1 = 0: Return
Next j2
860 Next j1
Return
' Assign Rectangles (Clockwise)
750 Select Case n10
Case 1: 'Top
a10(4) = a(1): a10(5) = a(2): a10(6) = a(3): a10(7) = a(4):
a10(14) = a(5): a10(15) = a(6): a10(16) = a(7): a10(17) = a(8):
a10(24) = a(9): a10(25) = a(10): a10(26) = a(11): a10(27) = a(12):
Case 2: 'Right
a10(38) = a(1): a10(39) = a(5): a10(40) = a(9):
a10(48) = a(2): a10(49) = a(6): a10(50) = a(10):
a10(58) = a(3): a10(59) = a(7): a10(60) = a(11):
a10(68) = a(4): a10(69) = a(8): a10(70) = a(12):
Case 3: 'Bottom
a10(74) = a(1): a10(75) = a(2): a10(76) = a(3): a10(77) = a(4):
a10(84) = a(5): a10(85) = a(6): a10(86) = a(7): a10(87) = a(8):
a10(94) = a(9): a10(95) = a(10): a10(96) = a(11): a10(97) = a(12):
Case 4: 'Left
a10(31) = a(1): a10(32) = a(5): a10(33) = a(9):
a10(41) = a(2): a10(42) = a(6): a10(43) = a(10):
a10(51) = a(3): a10(52) = a(7): a10(53) = a(11):
a10(61) = a(4): a10(62) = a(8): a10(63) = a(12):
End Select
Return
' Exclude solutions with identical numbers a()
800 fl1 = 1
For j1 = 1 To 12
a20 = a(j1)
For j2 = (1 + j1) To 12
If a20 = a(j2) Then fl1 = 0: Return
Next j2
Next j1
Return
' Remove used primes a() from available primes b1()
900 For i1 = 1 To 12
b1(a(i1)) = 0
Next i1
Return
End Sub