' Generates Prime Number Composed Magic Squares of order 7
' Simple Magic Corner Squares (Order 3 and 4)
' Tested with Office 2007 under Windows 7
Sub Priem7f2()
Dim a1(2448), a(100), a7(100), b1(121817), b(121817), c(100)
y = MsgBox("Locked", vbCritical, "Routine Priem7f2")
End
Sheets("Klad1").Select
n5 = 0: n9 = 0: k1 = 1: k2 = 1
ShtNm1 = "Pairs3a"
ShtNm2 = "Lines7"
t1 = Timer
For j100 = 60 To 65
' Start Reading Data ShtNm2
Rcrd1a = Sheets(ShtNm2).Cells(j100, 51).Value
MC7 = Sheets(ShtNm2).Cells(j100, 50).Value
' Read Prime Numbers From Sheet ShtNm1
Pr3 = Sheets(ShtNm1).Cells(Rcrd1a, 1).Value 'PairSum
s3 = 3 * Pr3 / 2 'Magic Sum 3 x 3
s4 = 2 * Pr3 'Magic Sum 4 x 4
s7 = 7 * Pr3 / 2 'Magic Sum 7 x 7
nVar = Sheets(ShtNm1).Cells(Rcrd1a, 5).Value
If nVar < 49 Then GoTo 1000
If MC7 <> s7 Then
y = MsgBox("Conflict in Data", vbCritical, "Read " + ShtNm2)
End
End If
Erase b1
For j1 = 1 To nVar
x = Sheets(ShtNm1).Cells(Rcrd1a, 6 + j1).Value
b1(x) = x
Next j1
pMax = Sheets(ShtNm1).Cells(Rcrd1a, 6 + nVar).Value
' Extended Range
For i1 = 7 To 1257
x = Sheets("Priem2").Cells(i1, 3).Value
b1(x) = x
Next i1
' Read Magic Corner Squares 3 x 3 and 4 x 4
' Store Magic Corner Squares in a7()
For i1 = 1 To 49
a(i1) = Sheets(ShtNm2).Cells(j100, i1).Value
a7(i1) = a(i1)
Next i1
n32 = 49: GoSub 950 'Remove used primes from available primes
Erase a
' Restore available pairs in a1()
n10 = 0
For j1 = 1 To pMax
If b1(j1) <> 0 Then
n10 = n10 + 1
a1(n10) = b1(j1)
End If
Next j1
m1 = 1: m2 = n10: n10 = 0
If a1(1) = 1 Then m1 = 2: m2 = m2 - 1
' Generate Simple Magic Rectangles 3 x 4
For j12 = m1 To m2 'a(12)
If b1(a1(j12)) = 0 Then GoTo 120
If b(a1(j12)) = 0 Then b(a1(j12)) = a1(j12): c(12) = a1(j12) Else GoTo 120
a(12) = a1(j12)
For j11 = m1 To m2 'a(11)
If b1(a1(j11)) = 0 Then GoTo 110
If b(a1(j11)) = 0 Then b(a1(j11)) = a1(j11): c(11) = a1(j11) Else GoTo 110
a(11) = a1(j11)
For j10 = m1 To m2 'a(10)
If b1(a1(j10)) = 0 Then GoTo 100
If b(a1(j10)) = 0 Then b(a1(j10)) = a1(j10): c(10) = a1(j10) Else GoTo 100
a(10) = a1(j10)
a(9) = s4 - a(10) - a(11) - a(12)
If a(9) < a1(m1) Or a(9) > a1(m2) Then GoTo 90:
If b1(a(9)) = 0 Then GoTo 90
If b(a(9)) = 0 Then b(a(9)) = a(9): c(9) = a(9) Else GoTo 90
For j8 = m1 To m2 'a(8)
If b1(a1(j8)) = 0 Then GoTo 80
If b(a1(j8)) = 0 Then b(a1(j8)) = a1(j8): c(8) = a1(j8) Else GoTo 80
a(8) = a1(j8)
a(4) = -s4 / 4 - a(8) + a(9) + a(10) + a(11)
If a(4) < a1(m1) Or a(4) > a1(m2) Then GoTo 40:
If b1(a(4)) = 0 Then GoTo 40
If b(a(4)) = 0 Then b(a(4)) = a(4): c(4) = a(4) Else GoTo 40
For j7 = m1 To m2 'a(7)
If b1(a1(j7)) = 0 Then GoTo 70
If b(a1(j7)) = 0 Then b(a1(j7)) = a1(j7): c(7) = a1(j7) Else GoTo 70
a(7) = a1(j7)
a(3) = s3 - a(7) - a(11)
If a(3) < a1(m1) Or a(3) > a1(m2) Then GoTo 30:
If b1(a(3)) = 0 Then GoTo 30
If b(a(3)) = 0 Then b(a(3)) = a(3): c(3) = a(3) Else GoTo 30
For j6 = m1 To m2 'a(6)
If b1(a1(j6)) = 0 Then GoTo 60
If b(a1(j6)) = 0 Then b(a1(j6)) = a1(j6): c(6) = a1(j6) Else GoTo 60
a(6) = a1(j6)
a(5) = s4 - a(6) - a(7) - a(8)
If a(5) < a1(m1) Or a(5) > a1(m2) Then GoTo 50:
If b1(a(5)) = 0 Then GoTo 50
If b(a(5)) = 0 Then b(a(5)) = a(5): c(5) = a(5) Else GoTo 50
a(2) = s3 - a(6) - a(10)
If n10 = 1 Then If s34 <> a(2) + a(7) + a(12) Then GoTo 20 'Check Diagonal
If a(2) < a1(m1) Or a(2) > a1(m2) Then GoTo 20:
If b1(a(2)) = 0 Then GoTo 20
If b(a(2)) = 0 Then b(a(2)) = a(2): c(2) = a(2) Else GoTo 20
a(1) = -s4 / 4 + a(6) + a(7) + a(8) - a(9)
If a(1) < a1(m1) Or a(1) > a1(m2) Then GoTo 10:
If b1(a(1)) = 0 Then GoTo 10
If b(a(1)) = 0 Then b(a(1)) = a(1): c(1) = a(1) Else GoTo 10
n10 = n10 + 1
Select Case n10
Case 1:
a7(4) = a(1): a7(5) = a(2): a7(6) = a(3): a7(7) = a(4):
a7(11) = a(5): a7(12) = a(6): a7(13) = a(7): a7(14) = a(8):
a7(18) = a(9): a7(19) = a(10): a7(20) = a(11): a7(21) = a(12):
s34 = s3 + s4 - a7(25) - a7(19) - a7(13) - a7(7)
n32 = 12: GoSub 950 'Remove used primes from b1()
Erase b, c: GoTo 120
Case 2:
a7(22) = a(9): a7(23) = a(5): a7(24) = a(1):
a7(29) = a(10): a7(30) = a(6): a7(31) = a(2):
a7(36) = a(11): a7(37) = a(7): a7(38) = a(3):
a7(43) = a(12): a7(44) = a(8): a7(45) = a(4):
GoSub 800 'Double Check Identical Integers a7()
If fl1 = 1 Then
' n9 = n9 + 1: GoSub 1640 'Print results (lines)
n9 = n9 + 1: GoSub 1650 'Print results (squares)
End If
Erase b1, b, c: GoTo 1000 'Print only first square
End Select
b(c(24)) = 0: c(24) = 0
240 b(c(1)) = 0: c(1) = 0
10 b(c(23)) = 0: c(23) = 0
230 b(c(2)) = 0: c(2) = 0
20 b(c(20)) = 0: c(20) = 0
200 b(c(5)) = 0: c(5) = 0
50 b(c(19)) = 0: c(19) = 0
190 b(c(6)) = 0: c(6) = 0
60 Next j6
b(c(22)) = 0: c(22) = 0
220 b(c(3)) = 0: c(3) = 0
30 b(c(18)) = 0: c(18) = 0
180 b(c(7)) = 0: c(7) = 0
70 Next j7
b(c(21)) = 0: c(21) = 0
210 b(c(4)) = 0: c(4) = 0
40 b(c(17)) = 0: c(17) = 0
170 b(c(8)) = 0: c(8) = 0
80 Next j8
b(c(16)) = 0: c(16) = 0
160 b(c(9)) = 0: c(9) = 0
90 b(c(15)) = 0: c(15) = 0
150 b(c(10)) = 0: c(10) = 0
100 Next j10
b(c(14)) = 0: c(14) = 0
140 b(c(11)) = 0: c(11) = 0
110 Next j11
b(c(13)) = 0: c(13) = 0
130 b(c(12)) = 0: c(12) = 0
120 Next j12
Erase b1, b, c
1000 Next j100
t2 = Timer
t10 = Str(t2 - t1) + " sec., " + Str(n9) + " Solutions"
y = MsgBox(t10, 0, "Routine Priem6f2")
End
' Double Check Identical Numbers a7()
800 fl1 = 1
For i1 = 1 To 49
a20 = a7(i1): If a20 = 0 Then GoTo 810
For i2 = (1 + i1) To 49
If a20 = a7(i2) Then fl1 = 0: Return
Next i2
810 Next i1
Return
' Remove used primes from b1()
950 For i1 = 1 To n32
b1(a(i1)) = 0
Next i1
Return
' Print results (lines)
1640 Cells(n9, 13).Select
For i1 = 1 To 49
Cells(n9, i1).Value = a7(i1)
Next i1
Cells(n9, 101).Value = s7
Cells(n9, 102).Value = Rcrd1a
Return
' Print results (squares)
1650 n2 = n2 + 1
If n2 = 4 Then
n2 = 1: k1 = k1 + 8: k2 = 1
Else
If n9 > 1 Then k2 = k2 + 8
End If
Cells(k1, k2 + 1).Select
Cells(k1, k2 + 1).Font.Color = -4165632
Cells(k1, k2 + 1).Value = "MC = " + CStr(s7)
i3 = 0
For i1 = 1 To 7
For i2 = 1 To 7
i3 = i3 + 1
Cells(k1 + i1, k2 + i2).Value = a7(i3)
Next i2
Next i1
Return
End Sub