Office Applications and Entertainment, Latin Squares |
||
![]() |
Attachment 8.8.1 | About the Author |
Construction of order 33 Self Orthogonal Composed Latin Diagonal Squares
Construct an order 32 Self Orthogonal Composed Latin Diagonal Square.
Sqrs8 The order 4 Self orthogonal Latin Diagonal Square shown above is based on the first elements of the Sub Squares, and has been used as a guideline for the construction of the square shown below. |
Step 1
25 32 31 30 26 27 28 29 31 26 25 28 32 29 30 27 29 28 27 26 30 31 32 25 26 31 32 29 25 28 27 30 27 30 29 32 28 25 26 31 32 25 26 27 31 30 29 28 30 27 28 25 29 32 31 26 28 29 30 31 27 26 25 32
17 24 23 22 18 19 20 21 23 18 17 20 24 21 22 19 21 20 19 18 22 23 24 17 18 23 24 21 17 20 19 22 19 22 21 24 20 17 18 23 24 17 18 19 23 22 21 20 22 19 20 17 21 24 23 18 20 21 22 23 19 18 17 24
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
25 32 31 30 26 27 28 29 31 26 25 28 32 29 30 27 29 28 27 26 30 31 32 25 26 31 32 29 25 28 27 30 27 30 29 32 28 25 26 31 32 25 26 27 31 30 29 28 30 27 28 25 29 32 31 26 28 29 30 31 27 26 25 32
17 24 23 22 18 19 20 21 23 18 17 20 24 21 22 19 21 20 19 18 22 23 24 17 18 23 24 21 17 20 19 22 19 22 21 24 20 17 18 23 24 17 18 19 23 22 21 20 22 19 20 17 21 24 23 18 20 21 22 23 19 18 17 24
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
17 24 23 22 18 19 20 21 23 18 17 20 24 21 22 19 21 20 19 18 22 23 24 17 18 23 24 21 17 20 19 22 19 22 21 24 20 17 18 23 24 17 18 19 23 22 21 20 22 19 20 17 21 24 23 18 20 21 22 23 19 18 17 24
25 32 31 30 26 27 28 29 31 26 25 28 32 29 30 27 29 28 27 26 30 31 32 25 26 31 32 29 25 28 27 30 27 30 29 32 28 25 26 31 32 25 26 27 31 30 29 28 30 27 28 25 29 32 31 26 28 29 30 31 27 26 25 32
17 24 23 22 18 19 20 21 23 18 17 20 24 21 22 19 21 20 19 18 22 23 24 17 18 23 24 21 17 20 19 22 19 22 21 24 20 17 18 23 24 17 18 19 23 22 21 20 22 19 20 17 21 24 23 18 20 21 22 23 19 18 17 24
25 32 31 30 26 27 28 29 31 26 25 28 32 29 30 27 29 28 27 26 30 31 32 25 26 31 32 29 25 28 27 30 27 30 29 32 28 25 26 31 32 25 26 27 31 30 29 28 30 27 28 25 29 32 31 26 28 29 30 31 27 26 25 32
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
Construct an intermediate order 33 square by adding a Center Cross, to the order 32 Self Orthogonal Composed Latin Diagonal Square as shown below: Step 2 The Intermediate Square has to be transformed to a Self Orthogonal Latin Diagonal Square, which can be achieved by means of a set of four order 9 Auxiliary Latin Diagonal Squares: |
A91
25 27 29 16 31 32 30 28 26 28 26 32 29 30 31 16 25 27 26 31 27 32 25 16 28 30 29 30 25 16 28 26 27 32 29 31 16 32 31 30 29 28 27 26 25 27 29 26 31 32 30 25 16 28 29 28 30 25 16 26 31 27 32 31 16 25 27 28 29 26 32 30 32 30 28 26 27 25 29 31 16 A92
8 10 12 16 14 15 13 11 9 11 9 15 12 13 14 16 8 10 9 14 10 15 8 16 11 13 12 13 8 16 11 9 10 15 12 14 16 15 14 13 12 11 10 9 8 10 12 9 14 15 13 8 16 11 12 11 13 8 16 9 14 10 15 14 16 8 10 11 12 9 15 13 15 13 11 9 10 8 12 14 16 A93
16 18 20 24 22 23 21 19 17 19 17 23 20 21 22 24 16 18 17 22 18 23 16 24 19 21 20 21 16 24 19 17 18 23 20 22 24 23 22 21 20 19 18 17 16 18 20 17 22 23 21 16 24 19 20 19 21 16 24 17 22 18 23 22 24 16 18 19 20 17 23 21 23 21 19 17 18 16 20 22 24 A94
16 1 3 7 5 6 4 2 0 2 0 6 3 4 5 7 16 1 0 5 1 6 16 7 2 4 3 4 16 7 2 0 1 6 3 5 7 6 5 4 3 2 1 0 16 1 3 0 5 6 4 16 7 2 3 2 4 16 7 0 5 1 6 5 7 16 1 2 3 0 6 4 6 4 2 0 1 16 3 5 7
The four Auxiliary Squares are based on the four sub series defined above and the number 16 (= center).
Step 3
The order 33 Self Orthogonal Composed Latin Diagonal Square shown above is ready to be used for
the construction of an order 33 Composed Simple Magic Square.
|
![]() |
About the Author |