Office Applications and Entertainment, Latin Squares

Vorige Pagina Attachment 8.8.1 About the Author

Construction of order 33 Self Orthogonal Composed Latin Diagonal Squares

Construct an order 32 Self Orthogonal Composed Latin Diagonal Square.

The required order 8 Self orthogonal Latin Diagonal Sub Squares can be constructed based on the sub series:

    {0, 1 ... 7}, {8, 9 ... 15}, {16}, {17, 18 ... 24} and {25, 26 ... 32}

with respectively the magic constants s8 = 28, 92, 164 and 228

Sqrs8
25 17 0 8
0 8 25 17
8 0 17 25
17 25 8 0

The order 4 Self orthogonal Latin Diagonal Square shown above is based on the first elements of the Sub Squares, and has been used as a guideline for the construction of the square shown below.

Step 1
25 32 31 30 26 27 28 29
31 26 25 28 32 29 30 27
29 28 27 26 30 31 32 25
26 31 32 29 25 28 27 30
27 30 29 32 28 25 26 31
32 25 26 27 31 30 29 28
30 27 28 25 29 32 31 26
28 29 30 31 27 26 25 32
17 24 23 22 18 19 20 21
23 18 17 20 24 21 22 19
21 20 19 18 22 23 24 17
18 23 24 21 17 20 19 22
19 22 21 24 20 17 18 23
24 17 18 19 23 22 21 20
22 19 20 17 21 24 23 18
20 21 22 23 19 18 17 24
0 7 6 5 1 2 3 4
6 1 0 3 7 4 5 2
4 3 2 1 5 6 7 0
1 6 7 4 0 3 2 5
2 5 4 7 3 0 1 6
7 0 1 2 6 5 4 3
5 2 3 0 4 7 6 1
3 4 5 6 2 1 0 7
8 15 14 13 9 10 11 12
14 9 8 11 15 12 13 10
12 11 10 9 13 14 15 8
9 14 15 12 8 11 10 13
10 13 12 15 11 8 9 14
15 8 9 10 14 13 12 11
13 10 11 8 12 15 14 9
11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4
6 1 0 3 7 4 5 2
4 3 2 1 5 6 7 0
1 6 7 4 0 3 2 5
2 5 4 7 3 0 1 6
7 0 1 2 6 5 4 3
5 2 3 0 4 7 6 1
3 4 5 6 2 1 0 7
8 15 14 13 9 10 11 12
14 9 8 11 15 12 13 10
12 11 10 9 13 14 15 8
9 14 15 12 8 11 10 13
10 13 12 15 11 8 9 14
15 8 9 10 14 13 12 11
13 10 11 8 12 15 14 9
11 12 13 14 10 9 8 15
25 32 31 30 26 27 28 29
31 26 25 28 32 29 30 27
29 28 27 26 30 31 32 25
26 31 32 29 25 28 27 30
27 30 29 32 28 25 26 31
32 25 26 27 31 30 29 28
30 27 28 25 29 32 31 26
28 29 30 31 27 26 25 32
17 24 23 22 18 19 20 21
23 18 17 20 24 21 22 19
21 20 19 18 22 23 24 17
18 23 24 21 17 20 19 22
19 22 21 24 20 17 18 23
24 17 18 19 23 22 21 20
22 19 20 17 21 24 23 18
20 21 22 23 19 18 17 24
8 15 14 13 9 10 11 12
14 9 8 11 15 12 13 10
12 11 10 9 13 14 15 8
9 14 15 12 8 11 10 13
10 13 12 15 11 8 9 14
15 8 9 10 14 13 12 11
13 10 11 8 12 15 14 9
11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4
6 1 0 3 7 4 5 2
4 3 2 1 5 6 7 0
1 6 7 4 0 3 2 5
2 5 4 7 3 0 1 6
7 0 1 2 6 5 4 3
5 2 3 0 4 7 6 1
3 4 5 6 2 1 0 7
17 24 23 22 18 19 20 21
23 18 17 20 24 21 22 19
21 20 19 18 22 23 24 17
18 23 24 21 17 20 19 22
19 22 21 24 20 17 18 23
24 17 18 19 23 22 21 20
22 19 20 17 21 24 23 18
20 21 22 23 19 18 17 24
25 32 31 30 26 27 28 29
31 26 25 28 32 29 30 27
29 28 27 26 30 31 32 25
26 31 32 29 25 28 27 30
27 30 29 32 28 25 26 31
32 25 26 27 31 30 29 28
30 27 28 25 29 32 31 26
28 29 30 31 27 26 25 32
17 24 23 22 18 19 20 21
23 18 17 20 24 21 22 19
21 20 19 18 22 23 24 17
18 23 24 21 17 20 19 22
19 22 21 24 20 17 18 23
24 17 18 19 23 22 21 20
22 19 20 17 21 24 23 18
20 21 22 23 19 18 17 24
25 32 31 30 26 27 28 29
31 26 25 28 32 29 30 27
29 28 27 26 30 31 32 25
26 31 32 29 25 28 27 30
27 30 29 32 28 25 26 31
32 25 26 27 31 30 29 28
30 27 28 25 29 32 31 26
28 29 30 31 27 26 25 32
8 15 14 13 9 10 11 12
14 9 8 11 15 12 13 10
12 11 10 9 13 14 15 8
9 14 15 12 8 11 10 13
10 13 12 15 11 8 9 14
15 8 9 10 14 13 12 11
13 10 11 8 12 15 14 9
11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4
6 1 0 3 7 4 5 2
4 3 2 1 5 6 7 0
1 6 7 4 0 3 2 5
2 5 4 7 3 0 1 6
7 0 1 2 6 5 4 3
5 2 3 0 4 7 6 1
3 4 5 6 2 1 0 7

Construct an intermediate order 33 square by adding a Center Cross, to the order 32 Self Orthogonal Composed Latin Diagonal Square as shown below:

Step 2
25 32 31 30 26 27 28 29 17 24 23 22 18 19 20 21 0 0 7 6 5 1 2 3 4 8 15 14 13 9 10 11 12
31 26 25 28 32 29 30 27 23 18 17 20 24 21 22 19 0 6 1 0 3 7 4 5 2 14 9 8 11 15 12 13 10
29 28 27 26 30 31 32 25 21 20 19 18 22 23 24 17 0 4 3 2 1 5 6 7 0 12 11 10 9 13 14 15 8
26 31 32 29 25 28 27 30 18 23 24 21 17 20 19 22 0 1 6 7 4 0 3 2 5 9 14 15 12 8 11 10 13
27 30 29 32 28 25 26 31 19 22 21 24 20 17 18 23 0 2 5 4 7 3 0 1 6 10 13 12 15 11 8 9 14
32 25 26 27 31 30 29 28 24 17 18 19 23 22 21 20 0 7 0 1 2 6 5 4 3 15 8 9 10 14 13 12 11
30 27 28 25 29 32 31 26 22 19 20 17 21 24 23 18 0 5 2 3 0 4 7 6 1 13 10 11 8 12 15 14 9
28 29 30 31 27 26 25 32 20 21 22 23 19 18 17 24 0 3 4 5 6 2 1 0 7 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 8 15 14 13 9 10 11 12 0 25 32 31 30 26 27 28 29 17 24 23 22 18 19 20 21
6 1 0 3 7 4 5 2 14 9 8 11 15 12 13 10 0 31 26 25 28 32 29 30 27 23 18 17 20 24 21 22 19
4 3 2 1 5 6 7 0 12 11 10 9 13 14 15 8 0 29 28 27 26 30 31 32 25 21 20 19 18 22 23 24 17
1 6 7 4 0 3 2 5 9 14 15 12 8 11 10 13 0 26 31 32 29 25 28 27 30 18 23 24 21 17 20 19 22
2 5 4 7 3 0 1 6 10 13 12 15 11 8 9 14 0 27 30 29 32 28 25 26 31 19 22 21 24 20 17 18 23
7 0 1 2 6 5 4 3 15 8 9 10 14 13 12 11 0 32 25 26 27 31 30 29 28 24 17 18 19 23 22 21 20
5 2 3 0 4 7 6 1 13 10 11 8 12 15 14 9 0 30 27 28 25 29 32 31 26 22 19 20 17 21 24 23 18
3 4 5 6 2 1 0 7 11 12 13 14 10 9 8 15 0 28 29 30 31 27 26 25 32 20 21 22 23 19 18 17 24
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 15 14 13 9 10 11 12 0 7 6 5 1 2 3 4 0 17 24 23 22 18 19 20 21 25 32 31 30 26 27 28 29
14 9 8 11 15 12 13 10 6 1 0 3 7 4 5 2 0 23 18 17 20 24 21 22 19 31 26 25 28 32 29 30 27
12 11 10 9 13 14 15 8 4 3 2 1 5 6 7 0 0 21 20 19 18 22 23 24 17 29 28 27 26 30 31 32 25
9 14 15 12 8 11 10 13 1 6 7 4 0 3 2 5 0 18 23 24 21 17 20 19 22 26 31 32 29 25 28 27 30
10 13 12 15 11 8 9 14 2 5 4 7 3 0 1 6 0 19 22 21 24 20 17 18 23 27 30 29 32 28 25 26 31
15 8 9 10 14 13 12 11 7 0 1 2 6 5 4 3 0 24 17 18 19 23 22 21 20 32 25 26 27 31 30 29 28
13 10 11 8 12 15 14 9 5 2 3 0 4 7 6 1 0 22 19 20 17 21 24 23 18 30 27 28 25 29 32 31 26
11 12 13 14 10 9 8 15 3 4 5 6 2 1 0 7 0 20 21 22 23 19 18 17 24 28 29 30 31 27 26 25 32
17 24 23 22 18 19 20 21 25 32 31 30 26 27 28 29 0 8 15 14 13 9 10 11 12 0 7 6 5 1 2 3 4
23 18 17 20 24 21 22 19 31 26 25 28 32 29 30 27 0 14 9 8 11 15 12 13 10 6 1 0 3 7 4 5 2
21 20 19 18 22 23 24 17 29 28 27 26 30 31 32 25 0 12 11 10 9 13 14 15 8 4 3 2 1 5 6 7 0
18 23 24 21 17 20 19 22 26 31 32 29 25 28 27 30 0 9 14 15 12 8 11 10 13 1 6 7 4 0 3 2 5
19 22 21 24 20 17 18 23 27 30 29 32 28 25 26 31 0 10 13 12 15 11 8 9 14 2 5 4 7 3 0 1 6
24 17 18 19 23 22 21 20 32 25 26 27 31 30 29 28 0 15 8 9 10 14 13 12 11 7 0 1 2 6 5 4 3
22 19 20 17 21 24 23 18 30 27 28 25 29 32 31 26 0 13 10 11 8 12 15 14 9 5 2 3 0 4 7 6 1
20 21 22 23 19 18 17 24 28 29 30 31 27 26 25 32 0 11 12 13 14 10 9 8 15 3 4 5 6 2 1 0 7

The Intermediate Square has to be transformed to a Self Orthogonal Latin Diagonal Square, which can be achieved by means of a set of four order 9 Auxiliary Latin Diagonal Squares:

A91
25 27 29 16 31 32 30 28 26
28 26 32 29 30 31 16 25 27
26 31 27 32 25 16 28 30 29
30 25 16 28 26 27 32 29 31
16 32 31 30 29 28 27 26 25
27 29 26 31 32 30 25 16 28
29 28 30 25 16 26 31 27 32
31 16 25 27 28 29 26 32 30
32 30 28 26 27 25 29 31 16
A92
8 10 12 16 14 15 13 11 9
11 9 15 12 13 14 16 8 10
9 14 10 15 8 16 11 13 12
13 8 16 11 9 10 15 12 14
16 15 14 13 12 11 10 9 8
10 12 9 14 15 13 8 16 11
12 11 13 8 16 9 14 10 15
14 16 8 10 11 12 9 15 13
15 13 11 9 10 8 12 14 16
A93
16 18 20 24 22 23 21 19 17
19 17 23 20 21 22 24 16 18
17 22 18 23 16 24 19 21 20
21 16 24 19 17 18 23 20 22
24 23 22 21 20 19 18 17 16
18 20 17 22 23 21 16 24 19
20 19 21 16 24 17 22 18 23
22 24 16 18 19 20 17 23 21
23 21 19 17 18 16 20 22 24
A94
16 1 3 7 5 6 4 2 0
2 0 6 3 4 5 7 16 1
0 5 1 6 16 7 2 4 3
4 16 7 2 0 1 6 3 5
7 6 5 4 3 2 1 0 16
1 3 0 5 6 4 16 7 2
3 2 4 16 7 0 5 1 6
5 7 16 1 2 3 0 6 4
6 4 2 0 1 16 3 5 7

The four Auxiliary Squares are based on the four sub series defined above and the number 16 (= center).

Replace the Diagonal Sub Squares (of the Intermediate Square) together with the corresponding sections of the Center Cross by the contents of these Auxiliary Squares as shown below:

Step 3
25 27 29 16 31 32 30 28 17 24 23 22 18 19 20 21 26 0 7 6 5 1 2 3 4 8 15 14 13 9 10 11 12
28 26 32 29 30 31 16 25 23 18 17 20 24 21 22 19 27 6 1 0 3 7 4 5 2 14 9 8 11 15 12 13 10
26 31 27 32 25 16 28 30 21 20 19 18 22 23 24 17 29 4 3 2 1 5 6 7 0 12 11 10 9 13 14 15 8
30 25 16 28 26 27 32 29 18 23 24 21 17 20 19 22 31 1 6 7 4 0 3 2 5 9 14 15 12 8 11 10 13
16 32 31 30 29 28 27 26 19 22 21 24 20 17 18 23 25 2 5 4 7 3 0 1 6 10 13 12 15 11 8 9 14
27 29 26 31 32 30 25 16 24 17 18 19 23 22 21 20 28 7 0 1 2 6 5 4 3 15 8 9 10 14 13 12 11
29 28 30 25 16 26 31 27 22 19 20 17 21 24 23 18 32 5 2 3 0 4 7 6 1 13 10 11 8 12 15 14 9
31 16 25 27 28 29 26 32 20 21 22 23 19 18 17 24 30 3 4 5 6 2 1 0 7 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 8 10 12 16 14 15 13 11 9 25 32 31 30 26 27 28 29 17 24 23 22 18 19 20 21
6 1 0 3 7 4 5 2 11 9 15 12 13 14 16 8 10 31 26 25 28 32 29 30 27 23 18 17 20 24 21 22 19
4 3 2 1 5 6 7 0 9 14 10 15 8 16 11 13 12 29 28 27 26 30 31 32 25 21 20 19 18 22 23 24 17
1 6 7 4 0 3 2 5 13 8 16 11 9 10 15 12 14 26 31 32 29 25 28 27 30 18 23 24 21 17 20 19 22
2 5 4 7 3 0 1 6 16 15 14 13 12 11 10 9 8 27 30 29 32 28 25 26 31 19 22 21 24 20 17 18 23
7 0 1 2 6 5 4 3 10 12 9 14 15 13 8 16 11 32 25 26 27 31 30 29 28 24 17 18 19 23 22 21 20
5 2 3 0 4 7 6 1 12 11 13 8 16 9 14 10 15 30 27 28 25 29 32 31 26 22 19 20 17 21 24 23 18
3 4 5 6 2 1 0 7 14 16 8 10 11 12 9 15 13 28 29 30 31 27 26 25 32 20 21 22 23 19 18 17 24
32 30 28 26 27 25 29 31 15 13 11 9 10 8 12 14 16 18 20 24 22 23 21 19 17 1 3 7 5 6 4 2 0
8 15 14 13 9 10 11 12 0 7 6 5 1 2 3 4 19 17 23 20 21 22 24 16 18 25 32 31 30 26 27 28 29
14 9 8 11 15 12 13 10 6 1 0 3 7 4 5 2 17 22 18 23 16 24 19 21 20 31 26 25 28 32 29 30 27
12 11 10 9 13 14 15 8 4 3 2 1 5 6 7 0 21 16 24 19 17 18 23 20 22 29 28 27 26 30 31 32 25
9 14 15 12 8 11 10 13 1 6 7 4 0 3 2 5 24 23 22 21 20 19 18 17 16 26 31 32 29 25 28 27 30
10 13 12 15 11 8 9 14 2 5 4 7 3 0 1 6 18 20 17 22 23 21 16 24 19 27 30 29 32 28 25 26 31
15 8 9 10 14 13 12 11 7 0 1 2 6 5 4 3 20 19 21 16 24 17 22 18 23 32 25 26 27 31 30 29 28
13 10 11 8 12 15 14 9 5 2 3 0 4 7 6 1 22 24 16 18 19 20 17 23 21 30 27 28 25 29 32 31 26
11 12 13 14 10 9 8 15 3 4 5 6 2 1 0 7 23 21 19 17 18 16 20 22 24 28 29 30 31 27 26 25 32
17 24 23 22 18 19 20 21 25 32 31 30 26 27 28 29 2 8 15 14 13 9 10 11 12 0 6 3 4 5 7 16 1
23 18 17 20 24 21 22 19 31 26 25 28 32 29 30 27 0 14 9 8 11 15 12 13 10 5 1 6 16 7 2 4 3
21 20 19 18 22 23 24 17 29 28 27 26 30 31 32 25 4 12 11 10 9 13 14 15 8 16 7 2 0 1 6 3 5
18 23 24 21 17 20 19 22 26 31 32 29 25 28 27 30 7 9 14 15 12 8 11 10 13 6 5 4 3 2 1 0 16
19 22 21 24 20 17 18 23 27 30 29 32 28 25 26 31 1 10 13 12 15 11 8 9 14 3 0 5 6 4 16 7 2
24 17 18 19 23 22 21 20 32 25 26 27 31 30 29 28 3 15 8 9 10 14 13 12 11 2 4 16 7 0 5 1 6
22 19 20 17 21 24 23 18 30 27 28 25 29 32 31 26 5 13 10 11 8 12 15 14 9 7 16 1 2 3 0 6 4
20 21 22 23 19 18 17 24 28 29 30 31 27 26 25 32 6 11 12 13 14 10 9 8 15 4 2 0 1 16 3 5 7

The order 33 Self Orthogonal Composed Latin Diagonal Square shown above is ready to be used for the construction of an order 33 Composed Simple Magic Square.


Vorige Pagina About the Author