Office Applications and Entertainment, Latin Squares | ||
![]() ![]() |
Index | About the Author |
8.5 Self Orthogonal Latin Squares (8 x 8)
A Self Orthogonal Latin Square A is a Latin Square that is Orthogonal to its Transposed T(A).
The transposed square T(A) can be obtained by exchanging the rows and columns of A.
A construction example of a Simple Magic Square M = A + 8 * T(A) + [1] is shown below:
Each (Order 8) Self Orthogonal Latin Diagonal Square is Double Self Orthogonal.
Each Self Orthogonal Latin Diagonal Square corresponds with 8! = 40320 Self Orthogonal Latin Diagonal Squares,
which can be obtained by permutation of the integers {ai, i = 1 ... 8}.
In addition to the transformations and permutations described above, each Self Orthogonal Latin Diagonal Square A corresponds with 192 transformations, as described below.
The resulting number of transformations, excluding the 180o rotated aspects, is 16/2 * 24 = 192,
which are shown in Attachment 8.5.12.
8.5.2 Associated Magic Squares
A construction example of an Associated Magic Square M = A + 8 * T(A) + [1] is shown below:
Attachment 8.5.3 shows the collection of 384 Associated Idempotent Self Orthogonal Latin Squares,
which has been generated within 178 seconds (ref. SelfOrth8a).
The total number of order 8 Self Orthogonal Associated Magic Latin Diagonal Squares is 147456 and can be generated within 1220 seconds
(ref. SelfOrth8c).
A construction example of an Ultra Magic Square M = A + 8 * T(A) + [1] is shown below:
Attachment 8.5.4
contains the 768 order 8 Self Orthogonal Ultra Magic Latin Diagonal Squares, which
could be generated within 1130 seconds
(ref. SelfOrth8c).
A construction example of a Pan Magic Square M = A + 8 * T(A) + [1] is shown below:
The total number of order 8 Self Orthogonal Pan Magic Latin Diagonal Squares is 127.488
and can be generated within 3560 seconds
(ref. SelfOrth8c).
This collection includes the sub collection of 86016 Pan Magic and Complete Self Orthogonal Latin Diagonal Squares
which can be filtered from the main collection
(ref. SelfOrth8c).
8.5.5 Non Associated Idempotent Squares
Introduction
The total number of Idempotent Self Orthogonal Latin Diagonal Squares is 1152 and was calculated by
Francis Gaspalou in 2010.
Any Self Orthogonal Latin Diagonal Square A1 can be transformed to an Idempotent
Self orthogonal Latin Diagonal Square A2 by means of substitution of the integers
A few applications of subject transformation are shown in:
It appeared that the number of different results depends from the base square of subject collections as illustrated in
Attachment 8.5.55 for the 8 aspects of the 22 Generators.
8.5.6 Magic Squares, Compact (4 x 4)
A construction example of a Compact (4 x 4) Magic Square M = A + 8 * T(A) + [1] is shown below:
The total number of subject order 8 Self Orthogonal Magic Latin Diagonal Squares is 135.168
and can be generated within 4130 seconds
(ref. SelfOrth8c).
8.5.7 Magic Squares, V Type ZigZag (4 Way)
A construction example of a V type ZigZag (4 way) Magic Square M = A + 8 * T(A) + [1] is shown below:
The total number of subject order 8 Self Orthogonal Magic Latin Diagonal Squares is 133.632
and can be generated within 3600 seconds
(ref. SelfOrth8c).
8.5.8 Magic Squares, Bent Diagonals (4 Way)
A construction example of a Bent Diagonal (4 way) Magic Square M = A + 8 * T(A) + [1] is shown below:
The total number of subject order 8 Self Orthogonal Magic Latin Diagonal Squares is 4608
and can be generated within 3600 seconds
(ref. SelfOrth8c).
The collection includes several sub collections which can be filtered from the main collection and summarised as follows:
Attachment 8.5.81 shows one example of each of the Self Orthogonal Latin Diagonal Squares listed above.
8.6 Interesting Sub Collections
A construction example of a Bordered Magic Square M = A + 8 * T(A) + [1] is shown below:
The total number of order 8 Self Orthogonal Bordered Latin Diagonal Squares is 49152
and can be generated within 3450 seconds
(ref. SelfOrth8c).
The collection includes several sub collections which can be filtered from the main collection and summarised as follows:
Attachment 8.6.1 shows one example of each of the Self Orthogonal Bordered Latin Diagonal Squares listed above.
8.6.2 Magic Squares with Corner Square
A construction example of a Magic Square M = A + 8 * T(A) + [1] with Order 4 Corner Square is shown below:
The total number of order 8 Self Orthogonal Latin Diagonal Squares with Order 4 Corner Square is 23040
and can be generated within 3330 seconds
(ref. SelfOrth8c).
The collection includes several sub collections which can be filtered from the main collection and summarised as follows:
Attachment 8.6.2 shows one example of each of the Self Orthogonal Latin Diagonal Squares listed above.
A construction example of a Composed Magic Square M = A + 8 * T(A) + [1] is shown below:
The total number of order 8 Self Orthogonal Composed Latin Diagonal Squares with Order 4 Sub Squares is 9984
and can be filtered from the collection described in Section 8.6.2 above.
The collection includes several sub collections which can be filtered from the main collection and summarised as follows:
Attachment 8.6.4 shows one example of each of the Self Orthogonal Composed Latin Diagonal Squares listed above.
8.6.4 Magic Squares with Square Inlay
A construction example of a Magic Square M = A + 8 * T(A) + [1] with Order 4 Square Inlay is shown below:
The total number of order 8 Self Orthogonal Latin Diagonal Squares with Order 4 Square Inlay is 4608
and can be generated within 3330 seconds
(ref. SelfOrth8c).
The collection includes several sub collections which can be filtered from the main collection and summarised as follows:
Attachment 8.6.3 shows one example of each of the Self Orthogonal Latin Diagonal Squares listed above.
8.7 Composed Latin Squares (32 x 32)
Order 8 Self Orthogonal Latin Diagonal Squares can be used to construct order 32 Self Orthogonal Composed Latin Diagonal Squares.
8.7.1 Composed Associated Squares
Order 8 Self Orthogonal Associated Latin Sub Squares can be constructed based on the sub series:
Sqrs8 The order 4 Self Orthogonal Associated Latin Square shown above is based on the first elements of the Sub Squares and has been used as a guideline for the construction of square A shown below. |
A, Associated
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
Attachment 8.7.1
shows the resulting
order 32 Composed Associated Square based on the Self Orthogonal Composed Associated Latin Square shown above.
8.7.2 Composed Pan Magic Squares (1)
Order 32 Self Orthogonal Composed Pan Magic and Complete Latin Diagonal Squares can be constructed based on Order 32 Self Orthogonal Composed Associated Latin Diagonal Squares as illustrated below (Euler): Sqrs8 The order 4 Self Orthogonal Associated Latin Square shown above is based on the first elements of the Sub Squares (before transformation) and has been used as a guideline for the construction of square A shown below. |
A, Pan Magic (Euler)
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
12 11 10 9 13 14 15 8 10 13 12 15 11 8 9 14 8 15 14 13 9 10 11 12 13 10 11 8 12 15 14 9 14 9 8 11 15 12 13 10 11 12 13 14 10 9 8 15 9 14 15 12 8 11 10 13 15 8 9 10 14 13 12 11
4 3 2 1 5 6 7 0 2 5 4 7 3 0 1 6 0 7 6 5 1 2 3 4 5 2 3 0 4 7 6 1 6 1 0 3 7 4 5 2 3 4 5 6 2 1 0 7 1 6 7 4 0 3 2 5 7 0 1 2 6 5 4 3
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
20 19 18 17 21 22 23 16 18 21 20 23 19 16 17 22 16 23 22 21 17 18 19 20 21 18 19 16 20 23 22 17 22 17 16 19 23 20 21 18 19 20 21 22 18 17 16 23 17 22 23 20 16 19 18 21 23 16 17 18 22 21 20 19
28 27 26 25 29 30 31 24 26 29 28 31 27 24 25 30 24 31 30 29 25 26 27 28 29 26 27 24 28 31 30 25 30 25 24 27 31 28 29 26 27 28 29 30 26 25 24 31 25 30 31 28 24 27 26 29 31 24 25 26 30 29 28 27
19 20 21 22 18 17 16 23 21 18 19 16 20 23 22 17 23 16 17 18 22 21 20 19 18 21 20 23 19 16 17 22 17 22 23 20 16 19 18 21 20 19 18 17 21 22 23 16 22 17 16 19 23 20 21 18 16 23 22 21 17 18 19 20
27 28 29 30 26 25 24 31 29 26 27 24 28 31 30 25 31 24 25 26 30 29 28 27 26 29 28 31 27 24 25 30 25 30 31 28 24 27 26 29 28 27 26 25 29 30 31 24 30 25 24 27 31 28 29 26 24 31 30 29 25 26 27 28
7 0 1 2 6 5 4 3 1 6 7 4 0 3 2 5 3 4 5 6 2 1 0 7 6 1 0 3 7 4 5 2 5 2 3 0 4 7 6 1 0 7 6 5 1 2 3 4 2 5 4 7 3 0 1 6 4 3 2 1 5 6 7 0
15 8 9 10 14 13 12 11 9 14 15 12 8 11 10 13 11 12 13 14 10 9 8 15 14 9 8 11 15 12 13 10 13 10 11 8 12 15 14 9 8 15 14 13 9 10 11 12 10 13 12 15 11 8 9 14 12 11 10 9 13 14 15 8
11 12 13 14 10 9 8 15 13 10 11 8 12 15 14 9 15 8 9 10 14 13 12 11 10 13 12 15 11 8 9 14 9 14 15 12 8 11 10 13 12 11 10 9 13 14 15 8 14 9 8 11 15 12 13 10 8 15 14 13 9 10 11 12
3 4 5 6 2 1 0 7 5 2 3 0 4 7 6 1 7 0 1 2 6 5 4 3 2 5 4 7 3 0 1 6 1 6 7 4 0 3 2 5 4 3 2 1 5 6 7 0 6 1 0 3 7 4 5 2 0 7 6 5 1 2 3 4
31 24 25 26 30 29 28 27 25 30 31 28 24 27 26 29 27 28 29 30 26 25 24 31 30 25 24 27 31 28 29 26 29 26 27 24 28 31 30 25 24 31 30 29 25 26 27 28 26 29 28 31 27 24 25 30 28 27 26 25 29 30 31 24
23 16 17 18 22 21 20 19 17 22 23 20 16 19 18 21 19 20 21 22 18 17 16 23 22 17 16 19 23 20 21 18 21 18 19 16 20 23 22 17 16 23 22 21 17 18 19 20 18 21 20 23 19 16 17 22 20 19 18 17 21 22 23 16
Attachment 8.7.2
shows the resulting
order 32 Composed Pan Magic and Complete Square based on the Self Orthogonal Composed Pan Magic Latin Square shown above.
8.7.3 Composed Pan Magic Squares (2)
Order 8 Self Orthogonal Pan Magic Latin Sub Squares can be constructed based on the sub series:
Sqrs8 The order 4 Self Orthogonal Pan Magic Latin Square shown above is based on first elements of the Sub Squares and has been used as a guideline for the construction of square A shown below. |
A, Pan Magic
9 12 13 8 11 14 15 10 15 10 11 14 13 8 9 12 12 9 8 13 14 11 10 15 10 15 14 11 8 13 12 9 13 8 9 12 15 10 11 14 11 14 15 10 9 12 13 8 8 13 12 9 10 15 14 11 14 11 10 15 12 9 8 13
1 4 5 0 3 6 7 2 7 2 3 6 5 0 1 4 4 1 0 5 6 3 2 7 2 7 6 3 0 5 4 1 5 0 1 4 7 2 3 6 3 6 7 2 1 4 5 0 0 5 4 1 2 7 6 3 6 3 2 7 4 1 0 5
25 28 29 24 27 30 31 26 31 26 27 30 29 24 25 28 28 25 24 29 30 27 26 31 26 31 30 27 24 29 28 25 29 24 25 28 31 26 27 30 27 30 31 26 25 28 29 24 24 29 28 25 26 31 30 27 30 27 26 31 28 25 24 29
17 20 21 16 19 22 23 18 23 18 19 22 21 16 17 20 20 17 16 21 22 19 18 23 18 23 22 19 16 21 20 17 21 16 17 20 23 18 19 22 19 22 23 18 17 20 21 16 16 21 20 17 18 23 22 19 22 19 18 23 20 17 16 21
17 20 21 16 19 22 23 18 23 18 19 22 21 16 17 20 20 17 16 21 22 19 18 23 18 23 22 19 16 21 20 17 21 16 17 20 23 18 19 22 19 22 23 18 17 20 21 16 16 21 20 17 18 23 22 19 22 19 18 23 20 17 16 21
25 28 29 24 27 30 31 26 31 26 27 30 29 24 25 28 28 25 24 29 30 27 26 31 26 31 30 27 24 29 28 25 29 24 25 28 31 26 27 30 27 30 31 26 25 28 29 24 24 29 28 25 26 31 30 27 30 27 26 31 28 25 24 29
1 4 5 0 3 6 7 2 7 2 3 6 5 0 1 4 4 1 0 5 6 3 2 7 2 7 6 3 0 5 4 1 5 0 1 4 7 2 3 6 3 6 7 2 1 4 5 0 0 5 4 1 2 7 6 3 6 3 2 7 4 1 0 5
9 12 13 8 11 14 15 10 15 10 11 14 13 8 9 12 12 9 8 13 14 11 10 15 10 15 14 11 8 13 12 9 13 8 9 12 15 10 11 14 11 14 15 10 9 12 13 8 8 13 12 9 10 15 14 11 14 11 10 15 12 9 8 13
1 4 5 0 3 6 7 2 7 2 3 6 5 0 1 4 4 1 0 5 6 3 2 7 2 7 6 3 0 5 4 1 5 0 1 4 7 2 3 6 3 6 7 2 1 4 5 0 0 5 4 1 2 7 6 3 6 3 2 7 4 1 0 5
9 12 13 8 11 14 15 10 15 10 11 14 13 8 9 12 12 9 8 13 14 11 10 15 10 15 14 11 8 13 12 9 13 8 9 12 15 10 11 14 11 14 15 10 9 12 13 8 8 13 12 9 10 15 14 11 14 11 10 15 12 9 8 13
17 20 21 16 19 22 23 18 23 18 19 22 21 16 17 20 20 17 16 21 22 19 18 23 18 23 22 19 16 21 20 17 21 16 17 20 23 18 19 22 19 22 23 18 17 20 21 16 16 21 20 17 18 23 22 19 22 19 18 23 20 17 16 21
25 28 29 24 27 30 31 26 31 26 27 30 29 24 25 28 28 25 24 29 30 27 26 31 26 31 30 27 24 29 28 25 29 24 25 28 31 26 27 30 27 30 31 26 25 28 29 24 24 29 28 25 26 31 30 27 30 27 26 31 28 25 24 29
25 28 29 24 27 30 31 26 31 26 27 30 29 24 25 28 28 25 24 29 30 27 26 31 26 31 30 27 24 29 28 25 29 24 25 28 31 26 27 30 27 30 31 26 25 28 29 24 24 29 28 25 26 31 30 27 30 27 26 31 28 25 24 29
17 20 21 16 19 22 23 18 23 18 19 22 21 16 17 20 20 17 16 21 22 19 18 23 18 23 22 19 16 21 20 17 21 16 17 20 23 18 19 22 19 22 23 18 17 20 21 16 16 21 20 17 18 23 22 19 22 19 18 23 20 17 16 21
9 12 13 8 11 14 15 10 15 10 11 14 13 8 9 12 12 9 8 13 14 11 10 15 10 15 14 11 8 13 12 9 13 8 9 12 15 10 11 14 11 14 15 10 9 12 13 8 8 13 12 9 10 15 14 11 14 11 10 15 12 9 8 13
1 4 5 0 3 6 7 2 7 2 3 6 5 0 1 4 4 1 0 5 6 3 2 7 2 7 6 3 0 5 4 1 5 0 1 4 7 2 3 6 3 6 7 2 1 4 5 0 0 5 4 1 2 7 6 3 6 3 2 7 4 1 0 5
Attachment 8.7.3
shows the resulting
order 32 Composed Pan Magic Square based on the Self Orthogonal Composed Pan Magic Latin Square shown above.
8.8 Composed Latin Squares (33 x 33)
Order 8 Self orthogonal Latin Diagonal Squares can be used to construct order 33 Self Orthogonal Composed Latin Diagonal Squares.
The required order 8 Self orthogonal Latin Diagonal Sub Squares can be constructed based on the sub series:
Sqrs8 The order 4 Self orthogonal Latin Diagonal Square shown above is based on the first elements of the original Sub Squares, and has been used as a guideline for the construction of square A shown below. |
A
25 27 29 16 31 32 30 28 17 24 23 22 18 19 20 21 26 0 7 6 5 1 2 3 4 8 15 14 13 9 10 11 12 28 26 32 29 30 31 16 25 23 18 17 20 24 21 22 19 27 6 1 0 3 7 4 5 2 14 9 8 11 15 12 13 10 26 31 27 32 25 16 28 30 21 20 19 18 22 23 24 17 29 4 3 2 1 5 6 7 0 12 11 10 9 13 14 15 8 30 25 16 28 26 27 32 29 18 23 24 21 17 20 19 22 31 1 6 7 4 0 3 2 5 9 14 15 12 8 11 10 13 16 32 31 30 29 28 27 26 19 22 21 24 20 17 18 23 25 2 5 4 7 3 0 1 6 10 13 12 15 11 8 9 14 27 29 26 31 32 30 25 16 24 17 18 19 23 22 21 20 28 7 0 1 2 6 5 4 3 15 8 9 10 14 13 12 11 29 28 30 25 16 26 31 27 22 19 20 17 21 24 23 18 32 5 2 3 0 4 7 6 1 13 10 11 8 12 15 14 9 31 16 25 27 28 29 26 32 20 21 22 23 19 18 17 24 30 3 4 5 6 2 1 0 7 11 12 13 14 10 9 8 15 0 7 6 5 1 2 3 4 8 10 12 16 14 15 13 11 9 25 32 31 30 26 27 28 29 17 24 23 22 18 19 20 21 6 1 0 3 7 4 5 2 11 9 15 12 13 14 16 8 10 31 26 25 28 32 29 30 27 23 18 17 20 24 21 22 19 4 3 2 1 5 6 7 0 9 14 10 15 8 16 11 13 12 29 28 27 26 30 31 32 25 21 20 19 18 22 23 24 17 1 6 7 4 0 3 2 5 13 8 16 11 9 10 15 12 14 26 31 32 29 25 28 27 30 18 23 24 21 17 20 19 22 2 5 4 7 3 0 1 6 16 15 14 13 12 11 10 9 8 27 30 29 32 28 25 26 31 19 22 21 24 20 17 18 23 7 0 1 2 6 5 4 3 10 12 9 14 15 13 8 16 11 32 25 26 27 31 30 29 28 24 17 18 19 23 22 21 20 5 2 3 0 4 7 6 1 12 11 13 8 16 9 14 10 15 30 27 28 25 29 32 31 26 22 19 20 17 21 24 23 18 3 4 5 6 2 1 0 7 14 16 8 10 11 12 9 15 13 28 29 30 31 27 26 25 32 20 21 22 23 19 18 17 24 32 30 28 26 27 25 29 31 15 13 11 9 10 8 12 14 16 18 20 24 22 23 21 19 17 1 3 7 5 6 4 2 0 8 15 14 13 9 10 11 12 0 7 6 5 1 2 3 4 19 17 23 20 21 22 24 16 18 25 32 31 30 26 27 28 29 14 9 8 11 15 12 13 10 6 1 0 3 7 4 5 2 17 22 18 23 16 24 19 21 20 31 26 25 28 32 29 30 27 12 11 10 9 13 14 15 8 4 3 2 1 5 6 7 0 21 16 24 19 17 18 23 20 22 29 28 27 26 30 31 32 25 9 14 15 12 8 11 10 13 1 6 7 4 0 3 2 5 24 23 22 21 20 19 18 17 16 26 31 32 29 25 28 27 30 10 13 12 15 11 8 9 14 2 5 4 7 3 0 1 6 18 20 17 22 23 21 16 24 19 27 30 29 32 28 25 26 31 15 8 9 10 14 13 12 11 7 0 1 2 6 5 4 3 20 19 21 16 24 17 22 18 23 32 25 26 27 31 30 29 28 13 10 11 8 12 15 14 9 5 2 3 0 4 7 6 1 22 24 16 18 19 20 17 23 21 30 27 28 25 29 32 31 26 11 12 13 14 10 9 8 15 3 4 5 6 2 1 0 7 23 21 19 17 18 16 20 22 24 28 29 30 31 27 26 25 32 17 24 23 22 18 19 20 21 25 32 31 30 26 27 28 29 2 8 15 14 13 9 10 11 12 0 6 3 4 5 7 16 1 23 18 17 20 24 21 22 19 31 26 25 28 32 29 30 27 0 14 9 8 11 15 12 13 10 5 1 6 16 7 2 4 3 21 20 19 18 22 23 24 17 29 28 27 26 30 31 32 25 4 12 11 10 9 13 14 15 8 16 7 2 0 1 6 3 5 18 23 24 21 17 20 19 22 26 31 32 29 25 28 27 30 7 9 14 15 12 8 11 10 13 6 5 4 3 2 1 0 16 19 22 21 24 20 17 18 23 27 30 29 32 28 25 26 31 1 10 13 12 15 11 8 9 14 3 0 5 6 4 16 7 2 24 17 18 19 23 22 21 20 32 25 26 27 31 30 29 28 3 15 8 9 10 14 13 12 11 2 4 16 7 0 5 1 6 22 19 20 17 21 24 23 18 30 27 28 25 29 32 31 26 5 13 10 11 8 12 15 14 9 7 16 1 2 3 0 6 4 20 21 22 23 19 18 17 24 28 29 30 31 27 26 25 32 6 11 12 13 14 10 9 8 15 4 2 0 1 16 3 5 7
8.9 Composed Latin Squares (40 x 40)
Order 8 Self Orthogonal Latin Diagonal Squares can be used to construct order 40 Self Orthogonal Composed Latin Diagonal Squares.
8.9.1 Composed Associated Squares
Order 8 Self Orthogonal Associated Latin Sub Squares can be constructed based on the sub series:
Sqrs8 The order 5 Self Orthogonal Associated Latin Square shown above is based on the first elements of the Sub Squares and has been used as a guideline for the construction of square A shown below. |
A, Associated
32 39 38 37 33 34 35 36 38 33 32 35 39 36 37 34 36 35 34 33 37 38 39 32 33 38 39 36 32 35 34 37 34 37 36 39 35 32 33 38 39 32 33 34 38 37 36 35 37 34 35 32 36 39 38 33 35 36 37 38 34 33 32 39
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
32 39 38 37 33 34 35 36 38 33 32 35 39 36 37 34 36 35 34 33 37 38 39 32 33 38 39 36 32 35 34 37 34 37 36 39 35 32 33 38 39 32 33 34 38 37 36 35 37 34 35 32 36 39 38 33 35 36 37 38 34 33 32 39
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
32 39 38 37 33 34 35 36 38 33 32 35 39 36 37 34 36 35 34 33 37 38 39 32 33 38 39 36 32 35 34 37 34 37 36 39 35 32 33 38 39 32 33 34 38 37 36 35 37 34 35 32 36 39 38 33 35 36 37 38 34 33 32 39
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
32 39 38 37 33 34 35 36 38 33 32 35 39 36 37 34 36 35 34 33 37 38 39 32 33 38 39 36 32 35 34 37 34 37 36 39 35 32 33 38 39 32 33 34 38 37 36 35 37 34 35 32 36 39 38 33 35 36 37 38 34 33 32 39
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
24 31 30 29 25 26 27 28 30 25 24 27 31 28 29 26 28 27 26 25 29 30 31 24 25 30 31 28 24 27 26 29 26 29 28 31 27 24 25 30 31 24 25 26 30 29 28 27 29 26 27 24 28 31 30 25 27 28 29 30 26 25 24 31
16 23 22 21 17 18 19 20 22 17 16 19 23 20 21 18 20 19 18 17 21 22 23 16 17 22 23 20 16 19 18 21 18 21 20 23 19 16 17 22 23 16 17 18 22 21 20 19 21 18 19 16 20 23 22 17 19 20 21 22 18 17 16 23
32 39 38 37 33 34 35 36 38 33 32 35 39 36 37 34 36 35 34 33 37 38 39 32 33 38 39 36 32 35 34 37 34 37 36 39 35 32 33 38 39 32 33 34 38 37 36 35 37 34 35 32 36 39 38 33 35 36 37 38 34 33 32 39
8 15 14 13 9 10 11 12 14 9 8 11 15 12 13 10 12 11 10 9 13 14 15 8 9 14 15 12 8 11 10 13 10 13 12 15 11 8 9 14 15 8 9 10 14 13 12 11 13 10 11 8 12 15 14 9 11 12 13 14 10 9 8 15
0 7 6 5 1 2 3 4 6 1 0 3 7 4 5 2 4 3 2 1 5 6 7 0 1 6 7 4 0 3 2 5 2 5 4 7 3 0 1 6 7 0 1 2 6 5 4 3 5 2 3 0 4 7 6 1 3 4 5 6 2 1 0 7
Attachment 8.9.1
shows the resulting order 40 Composed Associated Square based on the Self Orthogonal Composed Associated Latin Square shown above.
8.9.2 Composed Pan Magic Squares
Order 8 Self Orthogonal Pan Magic Latin Sub Squares can be constructed based on the sub series:
Sqrs8 The order 5 Self Orthogonal Pan Magic Latin Square shown above is based on the first elements of the Sub Squares and has been used as a guideline for the construction of square A shown below. |
A, Pan Magic
17 20 21 16 19 22 23 18 23 18 19 22 21 16 17 20 20 17 16 21 22 19 18 23 18 23 22 19 16 21 20 17 21 16 17 20 23 18 19 22 19 22 23 18 17 20 21 16 16 21 20 17 18 23 22 19 22 19 18 23 20 17 16 21
9 12 13 8 11 14 15 10 15 10 11 14 13 8 9 12 12 9 8 13 14 11 10 15 10 15 14 11 8 13 12 9 13 8 9 12 15 10 11 14 11 14 15 10 9 12 13 8 8 13 12 9 10 15 14 11 14 11 10 15 12 9 8 13
1 4 5 0 3 6 7 2 7 2 3 6 5 0 1 4 4 1 0 5 6 3 2 7 2 7 6 3 0 5 4 1 5 0 1 4 7 2 3 6 3 6 7 2 1 4 5 0 0 5 4 1 2 7 6 3 6 3 2 7 4 1 0 5
33 36 37 32 35 38 39 34 39 34 35 38 37 32 33 36 36 33 32 37 38 35 34 39 34 39 38 35 32 37 36 33 37 32 33 36 39 34 35 38 35 38 39 34 33 36 37 32 32 37 36 33 34 39 38 35 38 35 34 39 36 33 32 37
25 28 29 24 27 30 31 26 31 26 27 30 29 24 25 28 28 25 24 29 30 27 26 31 26 31 30 27 24 29 28 25 29 24 25 28 31 26 27 30 27 30 31 26 25 28 29 24 24 29 28 25 26 31 30 27 30 27 26 31 28 25 24 29
1 4 5 0 3 6 7 2 7 2 3 6 5 0 1 4 4 1 0 5 6 3 2 7 2 7 6 3 0 5 4 1 5 0 1 4 7 2 3 6 3 6 7 2 1 4 5 0 0 5 4 1 2 7 6 3 6 3 2 7 4 1 0 5
33 36 37 32 35 38 39 34 39 34 35 38 37 32 33 36 36 33 32 37 38 35 34 39 34 39 38 35 32 37 36 33 37 32 33 36 39 34 35 38 35 38 39 34 33 36 37 32 32 37 36 33 34 39 38 35 38 35 34 39 36 33 32 37
25 28 29 24 27 30 31 26 31 26 27 30 29 24 25 28 28 25 24 29 30 27 26 31 26 31 30 27 24 29 28 25 29 24 25 28 31 26 27 30 27 30 31 26 25 28 29 24 24 29 28 25 26 31 30 27 30 27 26 31 28 25 24 29
17 20 21 16 19 22 23 18 23 18 19 22 21 16 17 20 20 17 16 21 22 19 18 23 18 23 22 19 16 21 20 17 21 16 17 20 23 18 19 22 19 22 23 18 17 20 21 16 16 21 20 17 18 23 22 19 22 19 18 23 20 17 16 21
9 12 13 8 11 14 15 10 15 10 11 14 13 8 9 12 12 9 8 13 14 11 10 15 10 15 14 11 8 13 12 9 13 8 9 12 15 10 11 14 11 14 15 10 9 12 13 8 8 13 12 9 10 15 14 11 14 11 10 15 12 9 8 13
25 28 29 24 27 30 31 26 31 26 27 30 29 24 25 28 28 25 24 29 30 27 26 31 26 31 30 27 24 29 28 25 29 24 25 28 31 26 27 30 27 30 31 26 25 28 29 24 24 29 28 25 26 31 30 27 30 27 26 31 28 25 24 29
17 20 21 16 19 22 23 18 23 18 19 22 21 16 17 20 20 17 16 21 22 19 18 23 18 23 22 19 16 21 20 17 21 16 17 20 23 18 19 22 19 22 23 18 17 20 21 16 16 21 20 17 18 23 22 19 22 19 18 23 20 17 16 21
9 12 13 8 11 14 15 10 15 10 11 14 13 8 9 12 12 9 8 13 14 11 10 15 10 15 14 11 8 13 12 9 13 8 9 12 15 10 11 14 11 14 15 10 9 12 13 8 8 13 12 9 10 15 14 11 14 11 10 15 12 9 8 13
1 4 5 0 3 6 7 2 7 2 3 6 5 0 1 4 4 1 0 5 6 3 2 7 2 7 6 3 0 5 4 1 5 0 1 4 7 2 3 6 3 6 7 2 1 4 5 0 0 5 4 1 2 7 6 3 6 3 2 7 4 1 0 5
33 36 37 32 35 38 39 34 39 34 35 38 37 32 33 36 36 33 32 37 38 35 34 39 34 39 38 35 32 37 36 33 37 32 33 36 39 34 35 38 35 38 39 34 33 36 37 32 32 37 36 33 34 39 38 35 38 35 34 39 36 33 32 37
9 12 13 8 11 14 15 10 15 10 11 14 13 8 9 12 12 9 8 13 14 11 10 15 10 15 14 11 8 13 12 9 13 8 9 12 15 10 11 14 11 14 15 10 9 12 13 8 8 13 12 9 10 15 14 11 14 11 10 15 12 9 8 13
1 4 5 0 3 6 7 2 7 2 3 6 5 0 1 4 4 1 0 5 6 3 2 7 2 7 6 3 0 5 4 1 5 0 1 4 7 2 3 6 3 6 7 2 1 4 5 0 0 5 4 1 2 7 6 3 6 3 2 7 4 1 0 5
33 36 37 32 35 38 39 34 39 34 35 38 37 32 33 36 36 33 32 37 38 35 34 39 34 39 38 35 32 37 36 33 37 32 33 36 39 34 35 38 35 38 39 34 33 36 37 32 32 37 36 33 34 39 38 35 38 35 34 39 36 33 32 37
25 28 29 24 27 30 31 26 31 26 27 30 29 24 25 28 28 25 24 29 30 27 26 31 26 31 30 27 24 29 28 25 29 24 25 28 31 26 27 30 27 30 31 26 25 28 29 24 24 29 28 25 26 31 30 27 30 27 26 31 28 25 24 29
17 20 21 16 19 22 23 18 23 18 19 22 21 16 17 20 20 17 16 21 22 19 18 23 18 23 22 19 16 21 20 17 21 16 17 20 23 18 19 22 19 22 23 18 17 20 21 16 16 21 20 17 18 23 22 19 22 19 18 23 20 17 16 21
33 36 37 32 35 38 39 34 39 34 35 38 37 32 33 36 36 33 32 37 38 35 34 39 34 39 38 35 32 37 36 33 37 32 33 36 39 34 35 38 35 38 39 34 33 36 37 32 32 37 36 33 34 39 38 35 38 35 34 39 36 33 32 37
25 28 29 24 27 30 31 26 31 26 27 30 29 24 25 28 28 25 24 29 30 27 26 31 26 31 30 27 24 29 28 25 29 24 25 28 31 26 27 30 27 30 31 26 25 28 29 24 24 29 28 25 26 31 30 27 30 27 26 31 28 25 24 29
17 20 21 16 19 22 23 18 23 18 19 22 21 16 17 20 20 17 16 21 22 19 18 23 18 23 22 19 16 21 20 17 21 16 17 20 23 18 19 22 19 22 23 18 17 20 21 16 16 21 20 17 18 23 22 19 22 19 18 23 20 17 16 21
9 12 13 8 11 14 15 10 15 10 11 14 13 8 9 12 12 9 8 13 14 11 10 15 10 15 14 11 8 13 12 9 13 8 9 12 15 10 11 14 11 14 15 10 9 12 13 8 8 13 12 9 10 15 14 11 14 11 10 15 12 9 8 13
1 4 5 0 3 6 7 2 7 2 3 6 5 0 1 4 4 1 0 5 6 3 2 7 2 7 6 3 0 5 4 1 5 0 1 4 7 2 3 6 3 6 7 2 1 4 5 0 0 5 4 1 2 7 6 3 6 3 2 7 4 1 0 5
Attachment 8.9.2
shows the resulting order 40 Composed Pan Magic Square based on the Self Orthogonal Composed Pan Magic Latin Square shown above.
8.9.3 Composed Ultra Magic Squares
Order 8 Self Orthogonal Ultra Magic Latin Sub Squares can be constructed based on the sub series:
Sqrs8 The order 5 Self Orthogonal Ultra Magic Latin Square shown above is based on the first elements of the Sub Squares and has been used as a guideline for the construction of square A shown below. |
A, Ultra Magic
32 39 36 35 33 38 37 34 38 33 34 37 39 32 35 36 39 32 35 36 38 33 34 37 33 38 37 34 32 39 36 35 36 35 32 39 37 34 33 38 34 37 38 33 35 36 39 32 35 36 39 32 34 37 38 33 37 34 33 38 36 35 32 39
16 23 20 19 17 22 21 18 22 17 18 21 23 16 19 20 23 16 19 20 22 17 18 21 17 22 21 18 16 23 20 19 20 19 16 23 21 18 17 22 18 21 22 17 19 20 23 16 19 20 23 16 18 21 22 17 21 18 17 22 20 19 16 23
0 7 4 3 1 6 5 2 6 1 2 5 7 0 3 4 7 0 3 4 6 1 2 5 1 6 5 2 0 7 4 3 4 3 0 7 5 2 1 6 2 5 6 1 3 4 7 0 3 4 7 0 2 5 6 1 5 2 1 6 4 3 0 7
24 31 28 27 25 30 29 26 30 25 26 29 31 24 27 28 31 24 27 28 30 25 26 29 25 30 29 26 24 31 28 27 28 27 24 31 29 26 25 30 26 29 30 25 27 28 31 24 27 28 31 24 26 29 30 25 29 26 25 30 28 27 24 31
8 15 12 11 9 14 13 10 14 9 10 13 15 8 11 12 15 8 11 12 14 9 10 13 9 14 13 10 8 15 12 11 12 11 8 15 13 10 9 14 10 13 14 9 11 12 15 8 11 12 15 8 10 13 14 9 13 10 9 14 12 11 8 15
0 7 4 3 1 6 5 2 6 1 2 5 7 0 3 4 7 0 3 4 6 1 2 5 1 6 5 2 0 7 4 3 4 3 0 7 5 2 1 6 2 5 6 1 3 4 7 0 3 4 7 0 2 5 6 1 5 2 1 6 4 3 0 7
24 31 28 27 25 30 29 26 30 25 26 29 31 24 27 28 31 24 27 28 30 25 26 29 25 30 29 26 24 31 28 27 28 27 24 31 29 26 25 30 26 29 30 25 27 28 31 24 27 28 31 24 26 29 30 25 29 26 25 30 28 27 24 31
8 15 12 11 9 14 13 10 14 9 10 13 15 8 11 12 15 8 11 12 14 9 10 13 9 14 13 10 8 15 12 11 12 11 8 15 13 10 9 14 10 13 14 9 11 12 15 8 11 12 15 8 10 13 14 9 13 10 9 14 12 11 8 15
32 39 36 35 33 38 37 34 38 33 34 37 39 32 35 36 39 32 35 36 38 33 34 37 33 38 37 34 32 39 36 35 36 35 32 39 37 34 33 38 34 37 38 33 35 36 39 32 35 36 39 32 34 37 38 33 37 34 33 38 36 35 32 39
16 23 20 19 17 22 21 18 22 17 18 21 23 16 19 20 23 16 19 20 22 17 18 21 17 22 21 18 16 23 20 19 20 19 16 23 21 18 17 22 18 21 22 17 19 20 23 16 19 20 23 16 18 21 22 17 21 18 17 22 20 19 16 23
8 15 12 11 9 14 13 10 14 9 10 13 15 8 11 12 15 8 11 12 14 9 10 13 9 14 13 10 8 15 12 11 12 11 8 15 13 10 9 14 10 13 14 9 11 12 15 8 11 12 15 8 10 13 14 9 13 10 9 14 12 11 8 15
32 39 36 35 33 38 37 34 38 33 34 37 39 32 35 36 39 32 35 36 38 33 34 37 33 38 37 34 32 39 36 35 36 35 32 39 37 34 33 38 34 37 38 33 35 36 39 32 35 36 39 32 34 37 38 33 37 34 33 38 36 35 32 39
16 23 20 19 17 22 21 18 22 17 18 21 23 16 19 20 23 16 19 20 22 17 18 21 17 22 21 18 16 23 20 19 20 19 16 23 21 18 17 22 18 21 22 17 19 20 23 16 19 20 23 16 18 21 22 17 21 18 17 22 20 19 16 23
0 7 4 3 1 6 5 2 6 1 2 5 7 0 3 4 7 0 3 4 6 1 2 5 1 6 5 2 0 7 4 3 4 3 0 7 5 2 1 6 2 5 6 1 3 4 7 0 3 4 7 0 2 5 6 1 5 2 1 6 4 3 0 7
24 31 28 27 25 30 29 26 30 25 26 29 31 24 27 28 31 24 27 28 30 25 26 29 25 30 29 26 24 31 28 27 28 27 24 31 29 26 25 30 26 29 30 25 27 28 31 24 27 28 31 24 26 29 30 25 29 26 25 30 28 27 24 31
16 23 20 19 17 22 21 18 22 17 18 21 23 16 19 20 23 16 19 20 22 17 18 21 17 22 21 18 16 23 20 19 20 19 16 23 21 18 17 22 18 21 22 17 19 20 23 16 19 20 23 16 18 21 22 17 21 18 17 22 20 19 16 23
0 7 4 3 1 6 5 2 6 1 2 5 7 0 3 4 7 0 3 4 6 1 2 5 1 6 5 2 0 7 4 3 4 3 0 7 5 2 1 6 2 5 6 1 3 4 7 0 3 4 7 0 2 5 6 1 5 2 1 6 4 3 0 7
24 31 28 27 25 30 29 26 30 25 26 29 31 24 27 28 31 24 27 28 30 25 26 29 25 30 29 26 24 31 28 27 28 27 24 31 29 26 25 30 26 29 30 25 27 28 31 24 27 28 31 24 26 29 30 25 29 26 25 30 28 27 24 31
8 15 12 11 9 14 13 10 14 9 10 13 15 8 11 12 15 8 11 12 14 9 10 13 9 14 13 10 8 15 12 11 12 11 8 15 13 10 9 14 10 13 14 9 11 12 15 8 11 12 15 8 10 13 14 9 13 10 9 14 12 11 8 15
32 39 36 35 33 38 37 34 38 33 34 37 39 32 35 36 39 32 35 36 38 33 34 37 33 38 37 34 32 39 36 35 36 35 32 39 37 34 33 38 34 37 38 33 35 36 39 32 35 36 39 32 34 37 38 33 37 34 33 38 36 35 32 39
24 31 28 27 25 30 29 26 30 25 26 29 31 24 27 28 31 24 27 28 30 25 26 29 25 30 29 26 24 31 28 27 28 27 24 31 29 26 25 30 26 29 30 25 27 28 31 24 27 28 31 24 26 29 30 25 29 26 25 30 28 27 24 31
8 15 12 11 9 14 13 10 14 9 10 13 15 8 11 12 15 8 11 12 14 9 10 13 9 14 13 10 8 15 12 11 12 11 8 15 13 10 9 14 10 13 14 9 11 12 15 8 11 12 15 8 10 13 14 9 13 10 9 14 12 11 8 15
32 39 36 35 33 38 37 34 38 33 34 37 39 32 35 36 39 32 35 36 38 33 34 37 33 38 37 34 32 39 36 35 36 35 32 39 37 34 33 38 34 37 38 33 35 36 39 32 35 36 39 32 34 37 38 33 37 34 33 38 36 35 32 39
16 23 20 19 17 22 21 18 22 17 18 21 23 16 19 20 23 16 19 20 22 17 18 21 17 22 21 18 16 23 20 19 20 19 16 23 21 18 17 22 18 21 22 17 19 20 23 16 19 20 23 16 18 21 22 17 21 18 17 22 20 19 16 23
0 7 4 3 1 6 5 2 6 1 2 5 7 0 3 4 7 0 3 4 6 1 2 5 1 6 5 2 0 7 4 3 4 3 0 7 5 2 1 6 2 5 6 1 3 4 7 0 3 4 7 0 2 5 6 1 5 2 1 6 4 3 0 7
Attachment 8.9.3
shows the resulting order 40 Composed Ultra Magic Square based on the Self Orthogonal Composed Ultra Magic Latin Square shown above.
8.10 Composed Latin Squares (41 x 41)
Order 8 Self orthogonal Latin Diagonal Squares can be used to construct order 41 Self Orthogonal Composed Latin Diagonal Squares.
The required order 8 Self orthogonal Latin Diagonal Sub Squares can be constructed based on the sub series:
Sqrs8 The order 5 Self orthogonal Latin Diagonal Square shown above is based on the first elements of the Sub Squares, and has been used as a guideline for the construction of an order 41 square A as shown below. |
A
33 35 37 24 39 40 38 36 25 32 31 30 26 27 28 29 0 7 6 5 1 2 3 4 34 16 23 22 21 17 18 19 20 8 15 14 13 9 10 11 12 36 34 40 37 38 39 24 33 31 26 25 28 32 29 30 27 6 1 0 3 7 4 5 2 35 22 17 16 19 23 20 21 18 14 9 8 11 15 12 13 10 34 39 35 40 33 24 36 38 29 28 27 26 30 31 32 25 4 3 2 1 5 6 7 0 37 20 19 18 17 21 22 23 16 12 11 10 9 13 14 15 8 38 33 24 36 34 35 40 37 26 31 32 29 25 28 27 30 1 6 7 4 0 3 2 5 39 17 22 23 20 16 19 18 21 9 14 15 12 8 11 10 13 24 40 39 38 37 36 35 34 27 30 29 32 28 25 26 31 2 5 4 7 3 0 1 6 33 18 21 20 23 19 16 17 22 10 13 12 15 11 8 9 14 35 37 34 39 40 38 33 24 32 25 26 27 31 30 29 28 7 0 1 2 6 5 4 3 36 23 16 17 18 22 21 20 19 15 8 9 10 14 13 12 11 37 36 38 33 24 34 39 35 30 27 28 25 29 32 31 26 5 2 3 0 4 7 6 1 40 21 18 19 16 20 23 22 17 13 10 11 8 12 15 14 9 39 24 33 35 36 37 34 40 28 29 30 31 27 26 25 32 3 4 5 6 2 1 0 7 38 19 20 21 22 18 17 16 23 11 12 13 14 10 9 8 15 16 23 22 21 17 18 19 20 8 10 12 24 14 15 13 11 25 32 31 30 26 27 28 29 9 0 7 6 5 1 2 3 4 33 40 39 38 34 35 36 37 22 17 16 19 23 20 21 18 11 9 15 12 13 14 24 8 31 26 25 28 32 29 30 27 10 6 1 0 3 7 4 5 2 39 34 33 36 40 37 38 35 20 19 18 17 21 22 23 16 9 14 10 15 8 24 11 13 29 28 27 26 30 31 32 25 12 4 3 2 1 5 6 7 0 37 36 35 34 38 39 40 33 17 22 23 20 16 19 18 21 13 8 24 11 9 10 15 12 26 31 32 29 25 28 27 30 14 1 6 7 4 0 3 2 5 34 39 40 37 33 36 35 38 18 21 20 23 19 16 17 22 24 15 14 13 12 11 10 9 27 30 29 32 28 25 26 31 8 2 5 4 7 3 0 1 6 35 38 37 40 36 33 34 39 23 16 17 18 22 21 20 19 10 12 9 14 15 13 8 24 32 25 26 27 31 30 29 28 11 7 0 1 2 6 5 4 3 40 33 34 35 39 38 37 36 21 18 19 16 20 23 22 17 12 11 13 8 24 9 14 10 30 27 28 25 29 32 31 26 15 5 2 3 0 4 7 6 1 38 35 36 33 37 40 39 34 19 20 21 22 18 17 16 23 14 24 8 10 11 12 9 15 28 29 30 31 27 26 25 32 13 3 4 5 6 2 1 0 7 36 37 38 39 35 34 33 40 8 15 14 13 9 10 11 12 0 7 6 5 1 2 3 4 16 18 20 24 22 23 21 19 17 33 40 39 38 34 35 36 37 25 32 31 30 26 27 28 29 14 9 8 11 15 12 13 10 6 1 0 3 7 4 5 2 19 17 23 20 21 22 24 16 18 39 34 33 36 40 37 38 35 31 26 25 28 32 29 30 27 12 11 10 9 13 14 15 8 4 3 2 1 5 6 7 0 17 22 18 23 16 24 19 21 20 37 36 35 34 38 39 40 33 29 28 27 26 30 31 32 25 9 14 15 12 8 11 10 13 1 6 7 4 0 3 2 5 21 16 24 19 17 18 23 20 22 34 39 40 37 33 36 35 38 26 31 32 29 25 28 27 30 10 13 12 15 11 8 9 14 2 5 4 7 3 0 1 6 24 23 22 21 20 19 18 17 16 35 38 37 40 36 33 34 39 27 30 29 32 28 25 26 31 15 8 9 10 14 13 12 11 7 0 1 2 6 5 4 3 18 20 17 22 23 21 16 24 19 40 33 34 35 39 38 37 36 32 25 26 27 31 30 29 28 13 10 11 8 12 15 14 9 5 2 3 0 4 7 6 1 20 19 21 16 24 17 22 18 23 38 35 36 33 37 40 39 34 30 27 28 25 29 32 31 26 11 12 13 14 10 9 8 15 3 4 5 6 2 1 0 7 22 24 16 18 19 20 17 23 21 36 37 38 39 35 34 33 40 28 29 30 31 27 26 25 32 40 38 36 34 35 33 37 39 15 13 11 9 10 8 12 14 23 21 19 17 18 16 20 22 24 26 28 32 30 31 29 27 25 1 3 7 5 6 4 2 0 0 7 6 5 1 2 3 4 33 40 39 38 34 35 36 37 8 15 14 13 9 10 11 12 27 25 31 28 29 30 32 24 26 16 23 22 21 17 18 19 20 6 1 0 3 7 4 5 2 39 34 33 36 40 37 38 35 14 9 8 11 15 12 13 10 25 30 26 31 24 32 27 29 28 22 17 16 19 23 20 21 18 4 3 2 1 5 6 7 0 37 36 35 34 38 39 40 33 12 11 10 9 13 14 15 8 29 24 32 27 25 26 31 28 30 20 19 18 17 21 22 23 16 1 6 7 4 0 3 2 5 34 39 40 37 33 36 35 38 9 14 15 12 8 11 10 13 32 31 30 29 28 27 26 25 24 17 22 23 20 16 19 18 21 2 5 4 7 3 0 1 6 35 38 37 40 36 33 34 39 10 13 12 15 11 8 9 14 26 28 25 30 31 29 24 32 27 18 21 20 23 19 16 17 22 7 0 1 2 6 5 4 3 40 33 34 35 39 38 37 36 15 8 9 10 14 13 12 11 28 27 29 24 32 25 30 26 31 23 16 17 18 22 21 20 19 5 2 3 0 4 7 6 1 38 35 36 33 37 40 39 34 13 10 11 8 12 15 14 9 30 32 24 26 27 28 25 31 29 21 18 19 16 20 23 22 17 3 4 5 6 2 1 0 7 36 37 38 39 35 34 33 40 11 12 13 14 10 9 8 15 31 29 27 25 26 24 28 30 32 19 20 21 22 18 17 16 23 25 32 31 30 26 27 28 29 16 23 22 21 17 18 19 20 33 40 39 38 34 35 36 37 2 8 15 14 13 9 10 11 12 0 6 3 4 5 7 24 1 31 26 25 28 32 29 30 27 22 17 16 19 23 20 21 18 39 34 33 36 40 37 38 35 0 14 9 8 11 15 12 13 10 5 1 6 24 7 2 4 3 29 28 27 26 30 31 32 25 20 19 18 17 21 22 23 16 37 36 35 34 38 39 40 33 4 12 11 10 9 13 14 15 8 24 7 2 0 1 6 3 5 26 31 32 29 25 28 27 30 17 22 23 20 16 19 18 21 34 39 40 37 33 36 35 38 7 9 14 15 12 8 11 10 13 6 5 4 3 2 1 0 24 27 30 29 32 28 25 26 31 18 21 20 23 19 16 17 22 35 38 37 40 36 33 34 39 1 10 13 12 15 11 8 9 14 3 0 5 6 4 24 7 2 32 25 26 27 31 30 29 28 23 16 17 18 22 21 20 19 40 33 34 35 39 38 37 36 3 15 8 9 10 14 13 12 11 2 4 24 7 0 5 1 6 30 27 28 25 29 32 31 26 21 18 19 16 20 23 22 17 38 35 36 33 37 40 39 34 5 13 10 11 8 12 15 14 9 7 24 1 2 3 0 6 4 28 29 30 31 27 26 25 32 19 20 21 22 18 17 16 23 36 37 38 39 35 34 33 40 6 11 12 13 14 10 9 8 15 4 2 0 1 24 3 5 7
8.11 Composed Latin Squares (44 x 44)
A combination of order 8 and 9 (Inlaid) Self Orthogonal Latin Diagonal Squares can be used to construct order 44 Self Orthogonal Composed Latin Diagonal Squares.
Order 8 Self Orthogonal Latin Sub Squares can be constructed based on the sub series:
The order 5 Self orthogonal Latin Diagonal Square left above (Sqrs8),
is based on the first elements of the order 8 Sub Squares.
Attachment 8.11.5
shows the resulting order 44 Composed Simple Magic Square based on subject order 44 Composed Self Orthogonal Latin Diagonal Square.
8.12 Composed Latin Squares (56 x 56)
Order 8 Self Orthogonal Latin Diagonal Squares can be used to construct order 56 Self Orthogonal Composed Latin Diagonal Squares.
8.12.1 Composed Associated Squares
Order 8 Self Orthogonal Associated Latin Sub Squares can be constructed based on the sub series:
Sqrs8
The order 8 Self Orthogonal Associated Latin Square shown above is based on the first elements of the Sub Squares
and has been used as a guideline for the construction of square A as shown in
Attachment 8.12.11
8.12.2 Composed Pan Magic Squares
Order 8 Self Orthogonal Pan Magic Latin Sub Squares can be constructed based on the sub series:
Sqrs8
The order 8 Self Orthogonal Pan Magic Latin Square shown above is based on the first elements of the Sub Squares
and has been used as a guideline for the construction of square A as shown in
Attachment 8.12.21
8.12.3 Composed Ultra Magic Squares
Order 8 Self Orthogonal Ultra Magic Latin Sub Squares can be constructed based on the sub series:
Sqrs8
The order 8 Self Orthogonal Ultra Magic Latin Square shown above is based on the first elements of the Sub Squares
and has been used as a guideline for the construction of square A as shown in
Attachment 8.12.31
8.13 Composed Latin Squares (57 x 57)
Order 8 Self orthogonal Latin Diagonal Squares can be used to construct order 57 Self Orthogonal Composed Latin Diagonal Squares.
Order 8 Self Orthogonal Latin Sub Squares can be constructed based on the sub series:
Sqrs8
The order 8 Self Orthogonal Latin Square shown above is based on the first elements of the Sub Squares
and has been used as a guideline for the construction of an order 56 square A1 as shown in
Attachment 8.13.1
The construction of an order 57 Self Orthogonal Composed Latin Diagonal Squares A2 can be summarised as follows:
Attachment 8.13.4
shows the resulting order 57 Composed Simple Magic Square based on subject order 57 Composed Self Orthogonal Latin Diagonal Square.
8.14 Composed Latin Squares (64 x 64)
Order 8 Self Orthogonal Latin Diagonal Squares can be used to construct order 64 Self Orthogonal Composed Latin Diagonal Squares.
8.14.1 Composed Associated Squares
Order 8 Self Orthogonal Associated Latin Sub Squares can be constructed based on the sub series:
Sqrs8
The order 8 Self Orthogonal Associated Latin Square shown above is based on the first elements of the Sub Squares
and has been used as a guideline for the construction of square A as shown in
Attachment 8.14.11
8.14.2 Composed Pan Magic Squares (1)
Order 64 Self Orthogonal Composed Pan Magic and Complete Latin Diagonal Squares can be constructed based on Order 64 Self Orthogonal Composed Associated Latin Diagonal Squares as illustrated in Attachment 8.14.21 (Eulre Square A). Sqrs8
The order 8 Self Orthogonal Associated Latin Square shown above is based on the first elements of the Sub Squares
(before transformation) and has been used as a guideline for the construction of Euler Suare A.
8.14.3 Composed Pan Magic Squares (2)
Order 8 Self Orthogonal Pan Magic Latin Sub Squares can be constructed based on the sub series:
Sqrs8
The order 8 Self Orthogonal Pan Magic Latin Square shown above is based on the first elements of the Sub Squares
and has been used as a guideline for the construction of square A as shown in
Attachment 8.14.31
8.14.4 Composed Ultra Magic Squares
Order 8 Self Orthogonal Ultra Magic Latin Sub Squares can be constructed based on the sub series:
Sqrs8
The order 8 Self Orthogonal Ultra Magic Latin Square shown above is based on the first elements of the Sub Squares
and has been used as a guideline for the construction of square A as shown in
Attachment 8.14.41
8.15 Composed Latin Squares (65 x 65)
Order 8 Self orthogonal Latin Diagonal Squares can be used to construct order 65 Self Orthogonal Composed Latin Diagonal Squares.
Order 8 Self Orthogonal Latin Sub Squares can be constructed based on the sub series:
Sqrs8
The order 8 Self Orthogonal Latin Square shown above is based on the first elements of the Sub Squares
and has been used as a guideline for the construction of an order 64 square A1 as shown in
Attachment 8.15.1
The construction of an order 65 Self Orthogonal Composed Latin Diagonal Squares A2 can be summarised as follows:
Attachment 8.15.4
shows the resulting order 65 Composed Simple Magic Square based on subject order 65 Composed Self Orthogonal Latin Diagonal Square.
8.16.1 Mutual Orthogonal Latin Squares (8 x 8)
The construction of 0rder 8 Magic Squares based on following Mutual Orthogonal Latin (Diagonal) Squares
has been deducted and discussed in Section 8.7.3.
8.16.2 Semi Latin Squares (8 x 8)
The construction of 0rder 8 Mutual Orthogonal Semi-Latin (Diagonal) Squares has been deducted and discussed in:
Order 8 Mutual Orthogonal Semi-Latin Composed Magic Squares have been deducted and discussed in
Section 8.2.3 and
Section 8.2.4.
The obtained results regarding the order 8 Latin - and related Magic Squares, as deducted and discussed in previous sections, are summarized in following table:
Comparable methods as described above, can be applied to construct higher order Self Orthogonal Latin Squares,
of which a few examples will be described in following sections.
|
![]() ![]() |
Index | About the Author |