Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
a( 4) = s4 - a( 3) - a( 2) - a( 1)
a( 9) = s5 - a( 8) - a( 7) - a( 6) - a( 5)
a(14) = s5 - a(13) - a(12) - a(11) - a(10)
a(196) = p14 - a( 1)
a(195) = p14 - a(13)
a(194) = p14 - a(12)
a(193) = p14 - a(11)
a(192) = p14 - a(10)
a(191) = p14 - a( 9)
a(190) = p14 - a( 8)
a(189) = p14 - a( 7)
a(188) = p14 - a( 6)
a(187) = p14 - a( 5)
a(186) = p14 - a( 4)
a(185) = p14 - a( 3)
a(184) = p14 - a( 2)
a(183) = p14 - a(14)a( 43) = s4 - a( 1) - a( 15) - a( 29)
a(113) = s5 - a( 99) - a( 85) - a( 71) - a( 57)
a(127) = s5 - a(183) - a(169) - a(155) - a(141)
a( 28) = p14 - a( 15)
a( 42) = p14 - a( 29)
a( 56) = p14 - a( 43)
a( 70) = p14 - a( 57)
a( 84) = p14 - a( 71)
a( 98) = p14 - a( 85)
a(112) = p14 - a( 99)
a(126) = p14 - a(113)
a(140) = p14 - a(127)
a(154) = p14 - a(141)
a(168) = p14 - a(155)
a(182) = p14 - a(169)
which enable the development of a fast procedure to generate Prime Number Concentric Magic Squares of order 14 (ref. Priem14a).
14.34.2 Magic Squares, Bordered (14 x 14)
Based on the collections of 12th order Composed and miscellaneous Bordered Magic Squares, as discussed in Section 14.32.2 also following 14th order Bordered Magic Squares can be generated with routine Priem14a:
It should be noted that the Attachments listed above contain only those solutions which could be found within 10 seconds.
14.34.3 Magic Squares, Inlaid (14 x 14) The 14th order Prime Number Inlaid Magic Square shown below, is composed out of a Concentric Border, an Associated Border and four each 5th order Embedded Ultra Magic Squares with different Magic Sums. |
Mc14 = 46200
23 127 6521 6529 29 173 6451 6547 37 131 457 6337 6389 6449 487 6581 6569 6491 3019 1009 907 277 379 2389 5861 5939 179 6113 6317 6329 5813 2753 857 4973 1019 5987 2699 1181 3251 2927 1811 283 6373 4229 683 4799 1523 5153 3257 941 3011 3677 4967 3449 3911 227 233 2633 863 5657 3083 509 5303 2657 5717 3209 701 3761 5507 6367 389 2087 2909 1013 4643 1367 5483 2969 1451 2741 3407 5477 6053 6211 6217 1871 5147 1193 5309 3413 353 3491 3167 5237 3719 431 6269 383 6361 331 6553 1951 1789 4903 1759 6277 2677 2311 4567 1753 4729 239 241 547 1669 4783 3319 3673 3511 1597 3853 3307 4597 4231 4513 6359 719 1093 439 5233 3391 1549 6343 1627 6151 3517 883 5407 3967 5881 6199 2689 3271 3109 3463 1999 5113 2803 2437 3727 3181 5437 2371 401 6203 4789 5023 1879 4993 4831 229 5281 2467 4723 4357 757 271 397 6287 6421 661 739 4211 6221 6323 5693 5591 3581 109 31 19 313 151 6473 79 71 6571 6427 149 53 6563 6469 6143 263 211 6577 s5
15415 16045 16955 17585
The method to generate the order 12 Inlaid Magic Center Square with Order 5 Embedded Ultra Magic Squares with different Magic Sums
has been discussed in Section 14.21.4.
|
Mc14 = 46200
23 127 6521 6529 29 173 6451 6547 37 131 457 6337 6389 6449 487 5813 2753 857 4973 1019 6329 1811 5987 2699 1181 3251 2927 6113 6317 683 4799 1523 5153 3257 4229 3911 941 3011 3677 4967 3449 283 6373 863 5657 3083 509 5303 2633 5507 2657 5717 3209 701 3761 227 233 2909 1013 4643 1367 5483 2087 6053 2969 1451 2741 3407 5477 6367 389 5147 1193 5309 3413 353 1871 6269 3491 3167 5237 3719 431 6211 6217 6569 6491 3019 1009 907 6581 179 277 379 2389 5861 5939 383 6361 661 739 4211 6221 6323 6421 19 5693 5591 3581 109 31 239 241 6553 1951 1789 4903 1759 331 4729 6277 2677 2311 4567 1753 6359 719 1669 4783 3319 3673 3511 547 4513 1597 3853 3307 4597 4231 5881 6199 439 5233 3391 1549 6343 1093 3967 1627 6151 3517 883 5407 401 6203 3271 3109 3463 1999 5113 2689 2371 2803 2437 3727 3181 5437 397 6287 5023 1879 4993 4831 229 4789 271 5281 2467 4723 4357 757 313 151 6473 79 71 6571 6427 149 53 6563 6469 6143 263 211 6577 s5
15415 16045 16955 17585
Attachment 14.34.3 page 1, shows for a few Magic Sums the first occurring Bordered Magic Square,
14.34.4 Magic Squares, Eccentric (14 x 14)
Also for Prime Number Eccentric Magic Squares of order 14 it is convenient to split the supplementary rows and columns into: parts summing to s5 = 5 * s14 / 14 and s4 = 4 * s14 / 14:
This enables, based on the same principles, the development of a fast procedure (ref. Priem14b):
Attachment 14.34.2 shows,
based on the 12th order Eccentric Magic Squares as discussed in Section 14.32.5,
one Prime Number Eccentric Magic Square for some of the occurring Magic Sums.
14.34.5 Magic Squares, Composed (14 x 14) The 14th order Prime Number Composed Magic Square shown below: Mc14 = 24990 is an example of a Prime Number Magic Square with Magic Sum s14, composed of:
Subject Composed Magic Squares can be obtained by transformation of Bordered Magic Squares with Composed Magic Center Squares
as discussed in Section 14.34.2 above.
Attachment 14.34.36 shows for a few Magic Sums the first occurring 14th order Prime Number Composed Magic Square.
14.34.6 Magic Squares, Inlaid (14 x 14)
The 14th order Prime Number Inlaid Magic Square shown below: Mc14 = 24990 is an example of a Prime Number Inlaid Magic Square with Magic Sum s14, composed of:
Subject Inlaid Magic Squares can be obtained by transformation of Composed Magic Squares
as discussed in Section 14.32.4 above.
Attachment 14.34.37 shows for a few Magic Sums the first occurring 14th order Prime Number Inlaid Magic Square.
14.34.7 Associated Magic Squares (14 x 14) Associated Magic Squares, composed of four each Semi Magic Squares, contain two sets of Complementary Anti Symmetric Semi Magic Squares, which can be arranged as illustrated below: Mc14 = 85414 Due to the chosen arrangement the Composed Associated Magic Square shown above contains an order 6 Associated Magic Centre Square and an order 8 Associated Square Inlay.
Subject Composed Magic Squares can be transformed into (Inlaid) Four Way V type ZigZag Magic Squares by means of the transformation illustrated below for respectively:
A1 (Associated) B1 (Associated) Inlaid Four Way V type ZigZag Croswise Symmetric Magic Square B2, Mc14 = 85414: A2 (Complete) B2 (Crosswise Symmetric)
Each square shown above and in the referred attachments corresponds with numerous squares for the same Magic Sum.
14.34.8 Magic Squares, Composed (14 x 14)
The Composed Associated Magic Square shown in Section 14.34.6 above. can be transformed - by means of row and column permutations - to the Composed Associated Magic Square shown below: Mc14 = 85414
The Composed Associated Magic Square shown above contains an order 8 Associated Magic Centre Square and an order 6 Associated Square Inlay.
14.34.9 Magic Squares, Order 7 Magic Cube Based
Order 14 Prime Number Magic Squares composed of Order 7 (Semi-) Magic Sub Squares can be constructed based on Prime Number Concentric Magic Cubes, as deducted in
Section 7.5 of Chapter 'Prime Number Magic Cubes'.
|
Mc14 = 151186
20921 6719 9587 197 16319 19979 1871 19961 5927 7517 9791 17579 4391 10427 7757 251 13781 20939 3539 19559 9767 4937 13691 14369 41 4787 21107 16661 1229 19469 7547 21089 17921 6311 2027 2729 3467 16067 12539 6131 15791 18869 2309 20771 14411 8807 17837 2297 9161 12227 11 18341 5171 17471 13001 9371 20789 20759 4079 419 2141 11447 15959 14627 19157 3917 15737 15077 107 6971 1709 2477 19697 21341 449 14519 15401 9941 17669 1301 20507 10529 3989 11657 20879 5147 6491 2801 17387 1481 21407 11171 15671 14081 11807 4019 17207 1637 3557 20147 2417 15497 6977 6449 20549 191 16451 15107 18797 4211 20117 719 18461 17609 20297 1091 11069 3929 3137 11831 21347 7817 659 18059 2039 13841 16127 5807 5531 9059 15467 18131 5471 19571 2129 14051 509 3677 15287 20369 15017 8597 3257 16427 4127 21587 6581 12437 827 7187 12791 3761 19301 19289 8231 21491 17681 5861 6521 2441 13367 5639 839 17519 21179 19457 10151 809 13151 491 7229 21557 16811 7907 8447 6197 19121 1901 257 21149 7079 19889 1049 1451 19181 6101 14621 15149 18041 19727 14879 12011 21401 5279 1619 677
It can be noticed that, for the example shown above (Center Cube with Magic Top Plane), also the Semi Diagonals and the Main Bent Diagonals sum to the Magic Sum Mc14.
The obtained results regarding the 14th order Prime Number Magic Squares and related sub squares, as deducted and discussed in previous sections, are summarized in following table: |
Type
Characteristics
Subroutine
Results
Concentric
-
Bordered
Miscellaneous Types
Eccentric
-
Composed
Magic Cube Based
-
Center Cross, Pan Magic Sub Squares
-
Inlaid
Pan Magic Center Square and Square Inlays
-
Ultra Magic Square Inlays
-
Composed
Associated
-
Pan Magic, Complete
Euler
-
-
-
-
Comparable routines as listed above, can be used to generate miscellaneous other types of order 14 Prime Number Magic Squares,
which will be described in following sections.
|
Index | About the Author |