Office Applications and Entertainment, Magic Squares

Vorige Pagina Volgende Pagina Index About the Author

14.0    Special Magic Squares, Prime Numbers

14.13   Consecutive Primes (1)

Prime Number Magic Squares with Consecutive Primes can be generated with comparable routines as described in Section 14, however based on consecutive prime variable values {ai} with i = 1 ... n.

14.13.1 Magic Squares (4 x 4)

Based on the equations defining a Magic Square of the fourth order:

a(13) =  s1 - a(14) - a(15) - a(16)
a( 9) =  s1 - a(10) - a(11) - a(12)
a( 7) =       a( 8) - a(10) + a(12) - a(13) + a(16)
a( 6) =  s1 - a( 8) - a(11) - a(12) + a(13) - a(16)
a( 5) =     - a( 8) + a(10) + a(11)
a( 4) =  s1 - a( 7) - a(10) - a(13)
a( 3) = -s1 - a( 8) + a( 9) + 2 * a(10) +         2 * a(13) + a(14)
a( 2) =       a( 8) - a( 9) - 2 * a(10) + a(15) + 2 * a(16)
a( 1) =       a( 8) + a(12) - a(13)

and preselected ranges of consecutive primes, routine Priem4b2 can be used to generate order 4 Prime Number Magic Squares with Consecutive Prime Numbers.

Prime Number Magic Squares with Consecutive Prime Numbers for MC = 258 (32 ea) and MC = 276 (64 ea) were already found by means of routine Priem4 and shown in Attachment 14.2.1.

Attachment 14.13.1 shows for a few higher Magic Sums the first occurring Prime Number Magic Square with Consecutive Prime Numbers.

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.

14.13.2 Magic Squares (5 x 5)

Based on the equations defining a Magic Square of the fifth order:

a(21) =  s1 - a(22) - a(23) - a(24) - a(25)
a(16) =  s1 - a(17) - a(18) - a(19) - a(20)
a(11) =  s1 - a(12) - a(13) - a(14) - a(15)
a( 9) =       a(10) - a(13) + a(15) - a(17) + a(20) - a(21) + a(25)
a( 7) = (s1 - a( 8) - a( 9) - a(10) + a(11) - a(13) + a(16) - a(19) + a(21) - a(25))/2
a( 6) =  s1 - a( 7) - a( 8) - a( 9) - a(10)
a( 5) =  s1 - a( 9) - a(13) - a(17) - a(21)   
a( 4) =  s1 - a( 9) - a(14) - a(19) - a(24)
a( 3) =  s1 - a( 8) - a(13) - a(18) - a(23)
a( 2) =  s1 - a( 7) - a(12) - a(17) - a(22)
a( 1) =  s1 - a( 2) - a( 3) - a( 4) - a( 5)

and preselected ranges of consecutive primes, routine Priem5b2 can be used to generate order 5 Prime Number Magic Squares with Consecutive Prime Numbers.

Attachment 14.13.2 shows for miscellaneous Magic Sums the first occurring Prime Number Magic Square with Consecutive Prime Numbers.

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.

One of the possible aspects of the square with the smallest Magic Sum (MC = 313) was previously published by Max Alekseyey (2009).

14.13.3 Pan Magic Squares (6 x 6)

Based on the equations defining a Pan Magic Square of the sixth order:

a(31) =        s1 - a(32) - a(33) - a(34) - a(35) - a(36)
a(25) =        s1 - a(26) - a(27) - a(28) - a(29) - a(30)
a(19) =        s1 - a(20) - a(21) - a(22) - a(23) - a(24)
a(17) =  2/3 * s1 - a(18) + a(20) + a(21) - a(23) - a(24) + a(26) + a(27) - a(29) - a(30) - a(35) - a(36)
a(16) =    2 * s1 + a(18) - a(20) - 2*a(21) - 2*a(22) - a(23) - a(26) - 2*a(27) - 2*a(28) - a(29) - a(34) + a(36)
a(15) =  2/3 * s1 - a(18) - a(33) - a(36)
a(14) =             a(18) - a(20) - a(21) + a(23) + a(24) - a(26) - a(27) + a(29) + a(30) - a(32) + a(36)
a(13) = -4/3 * s1 - a(18) + a(20) + 2*a(21) + 2*a(22) + a(23) + a(26) + 2*a(27) + 2*a(28) + a(29) - a(31) - a(36)
a(12) = 11/6 * s1 - a(20) - a(21) - a(22) - a(26) - 2*a(27) - a(28) - a(32) - a(33) - a(34)
a(11) = -7/6 * s1 + a(22) + a(23) + a(24) - a(26) + a(28) + a(29) + a(30) + a(34) + a(35) + a(36)
a(10) = -7/6 * s1 + a(21) + a(22) + a(23) - a(25) + a(27) + a(28) + a(29) + a(33) + a(34) + a(35)
a(9)  = -7/6 * s1 + a(20) + a(21) + a(22) + a(26) + a(27) + a(28) - a(30) + a(32) + a(33) + a(34)
a(8)  = 11/6 * s1 - a(22) - a(23) - a(24) - a(28) - 2*a(29) - a(30) - a(34) - a(35)-a(36)
a(7)  = 11/6 * s1 - a(21) - a(22) - a(23) - a(27) - 2*a(28) - a(29) - a(33) - a(34)-a(35)
a(6)  = -5/6 * s1 - a(18) + a(20) + a(21) + a(22) - a(24) + a(26) + 2*a(27) + a(28)-a(30)+a(32)+a(33)+a(34)-a(36)
a(5)  =  1/2 * s1 + a(18) + a(19) + a(24) - a(27) - a(28) - a(29) - a(34) - a(35)
a(4)  =  1/6 * s1 - a(18) + a(20) + a(21) - a(28) - a(29) - a(30) + a(31) + a(32)
a(3)  =  1/2 * s1 + a(18) - a(20) - 2*a(21) - a(22) - a(26) - 2*a(27) - a(28) + a(30) + a(31) + a(35) + 2*a(36)
a(2)  =  1/6 * s1 - a(18) + a(21) + a(22) - a(25) - a(26) - a(30) + a(34) + a(35)
a(1)  =  1/2 * s1 + a(18) + a(23) + a(24) - a(25) - a(26) - a(27) - a(31) - a(32)

and preselected ranges of consecutive primes, routine Priem6b1 can be used to generate order 6 Prime Number Magic Squares with Consecutive Prime Numbers.

Although the first range of 36 Consecutive Primes with a valid Magic Sum MC6 = 930 can be determined, subject routine is not very feasible due to the high number of independent variables (16 ea).

In spite of the above following solution for MC6 = 930 was found by A. W. Johnson Jr (1981/82):

Pan Magic Square
67 193 71 251 109 239
139 233 113 181 157 107
241 97 191 89 163 149
73 167 131 229 151 179
199 103 227 101 127 173
211 137 197 79 223 83

Subject square corresponds with numerous Prime Number Pan Magic Squares with the same Magic Sum and variable values.

14.13.4 Simple Magic Squares (6 x 6)

Prime Number Simple Magic Squares of order 6 can be constructed very efficiently with the Generator Principle, as applied for the construction of Bimagic Squares.

The Generator Method, as applied for Consecutive Prime Numbers can be summarised as follows:

  • Generate the Magic Series for the applicable 36 Consecutive Prime Numbers and the related Magic Constant (ref. MgcLns6);
  • Construct Generators with 6 Magic Rows, based on the Magic Series obtained above (ref. CnstrGen01);
  • Construct Semi Magic Squares based on the Generators obtained above, by permutating the numbers within the rows and determine the number of related Magic Squares (ref. CnstrSqrs6);
  • Permutate the rows and columns within the Semi Magic Squares, in order to obtain Magic Squares (if possible).

For the Consecutive Prime Numbers used in Section 14.13.3 above (MC6 = 930), 12980 Magic Series could be generated, resulting in numerous Generators.

In order to limit the collection a little bit, 585 Generators were selected based on the application of 8 Unique Magic Series for each Generator.

The first Generator resulted already in 566 Semi Magic Squares with 671 related Simple Magic Squares.

The first occurring Semi Magic Square and the resulting Simple Magic Square - after row and column permutation(s) - are shown below:

Semi Magic Square
67 79 233 191 181 179
71 229 101 197 193 139
73 239 103 199 149 167
227 83 173 127 163 157
241 89 223 109 131 137
251 211 97 107 113 151
Simple Magic Square
101 197 193 139 71 229
103 199 149 167 73 239
173 127 163 157 227 83
223 109 131 137 241 89
97 107 113 151 251 211
233 191 181 179 67 79

The method described above has been applied for miscellaneous Magic Sums, for which the first occurring Simple Magic Squares are shown in Attachment 14.13.4.

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.

14.13.5a Simple Magic Squares (7 x 7)

Prime Number Simple Magic Squares of order 7 can be constructed with the Generator Principle, as discussed in Section 14.13.4 above.

A possible Semi Magic Square and resulting Simple Magic Square are shown below, for the smallest consecutive prime numbers {7 ... 239} for which an Order 7 Simple Magic Square exists (MC7 = 797):

Semi Magic Square
7 17 193 167 163 137 113
11 19 97 191 179 149 151
13 23 211 181 109 157 103
67 197 199 127 53 71 83
227 223 31 43 61 73 139
233 89 29 41 173 131 101
239 229 37 47 59 79 107
Simple Magic Square
13 23 109 103 181 211 157
227 223 61 139 43 31 73
7 17 163 113 167 193 137
239 229 59 107 47 37 79
11 19 179 151 191 97 149
233 89 173 101 41 29 131
67 197 53 83 127 199 71

The Generator Method has been applied for miscellaneous Magic Sums, for which the first occurring Simple Magic Squares are shown in Attachment 14.13.5.

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.

14.13.5b Inlaid Magic Squares (7 x 7)

Occasionally Prime Number Inlaid Magic Squares of order 7 with Diamond Inlays can be constructed.

An example is shown below, for the consecutive prime numbers {7 ... 239} with the related Magic Sum s7 = 797.

Inlaid Magic Square
199 11 19 107 227 53 181
211 109 151 71 61 157 37
47 103 233 73 149 13 179
43 89 41 131 97 173 223
127 229 113 193 29 83 23
163 59 101 191 67 79 137
7 197 139 31 167 239 17

The Inlaid Magic Square shown above contains:

  • One 3th order Magic Diamond Inlay with Magic Sum s3 = 393
  • One 4th order Magic Diamond Inlay with Magic Sum s4 = 404

and is unique for the applied Magic Sums and variable values.

14.13.6  Simple Magic Squares (8 x 8)

Prime Number Simple Magic Squares of order 8 can be constructed with the Generator Principle, as applied in previous sections.

A possible Semi Magic Square and resulting Simple Magic Square are shown below, for the smallest consecutive prime numbers {79 ... 439} for which an Order 8 Simple Magic Square exists (MC8 = 2016):

Semi Magic Square
439 433 137 157 179 191 229 251
431 421 131 151 277 181 197 227
419 389 127 281 163 193 211 233
379 353 113 149 337 199 223 263
97 109 409 383 173 349 257 239
89 103 401 139 373 307 311 293
83 101 331 359 347 283 271 241
79 107 367 397 167 313 317 269
Simple Magic Square
229 439 433 137 191 179 157 251
197 431 421 131 181 277 151 227
311 89 103 401 307 373 139 293
271 83 101 331 283 347 359 241
223 379 353 113 199 337 149 263
257 97 109 409 349 173 383 239
211 419 389 127 193 163 281 233
317 79 107 367 313 167 397 269

The Generator Method has been applied for miscellaneous Magic Sums, for which the first occurring Simple Magic Squares are shown in Attachment 14.13.6.

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.

14.13.7a Simple Magic Squares (9 x 9)

Prime Number Simple Magic Squares of order 9 can be constructed with the Generator Principle, as applied in previous sections.

A possible Semi Magic Square and resulting Simple Magic Square are shown below, for the smallest consecutive prime numbers {37 ... 479} for which an Order 9 Simple Magic Square exists (MC9 = 2211):

Semi Magic Square
37 41 43 59 463 307 373 409 479
67 83 113 47 359 353 421 389 379
157 127 179 71 439 367 397 191 283
211 151 181 337 227 347 103 383 271
233 263 251 401 223 269 229 149 193
241 311 277 433 73 281 293 163 139
349 331 317 457 313 101 109 97 137
449 443 419 239 53 107 197 173 131
467 461 431 167 61 79 89 257 199
Simple Magic Square
83 359 389 47 67 379 353 113 421
127 439 191 71 157 283 367 179 397
151 227 383 337 211 271 347 181 103
263 223 149 401 233 193 269 251 229
41 463 409 59 37 479 307 43 373
311 73 163 433 241 139 281 277 293
331 313 97 457 349 137 101 317 109
461 61 257 167 467 199 79 431 89
443 53 173 239 449 131 107 419 197

The Magic Square shown above is essential different from the corresponding Magic Square as previously published by A. Susuki (1957).

The Generator Method has been applied for miscellaneous Magic Sums, for which the first occurring Simple Magic Squares are shown in Attachment 14.13.7.

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum and variable values.

14.13.7b Composed Magic Squares (9 x 9)

Prime Number Composed Magic Squares of order 9 can be constructed when the Magic Sum s9 is a multiple of 9.

An example is shown below, for the consecutive prime numbers {601 ... 1151} with the related Magic Sum s9 = 7821.

Composed Magic Square
1103 619 1021 733 701 1013 853 691 1087
727 1063 653 1033 773 941 811 997 823
607 1051 709 1109 1049 881 751 757 907
1039 743 1093 601 953 641 1061 1031 659
937 827 829 883 613 983 1151 967 631
859 839 769 1009 1097 617 919 643 1069
877 821 991 787 857 977 863 929 719
911 971 947 647 661 1091 673 1123 797
761 887 809 1019 1117 677 739 683 1129

The Magic Square shown above is composed of:

  • One 4th order Magic Corner Square with Magic Sum s4 = 4 * s9 / 9 = 3476 (top/left)
  • One 5th order Magic Corner Square with Magic Sum s5 = 5 * s9 / 9 = 4345 (bottom/right)
  • Two Magic Rectangles order 4 x 5 with s4 = 3476 and s5 = 4345

Subject Magic Squares can be transformed to:

  • Order 9 Inlaid Magic Squares with order 4 and 5 Square Inlays
  • Order 9 Bordered Magic Squares with order 5 Magic Center Square

As illustrated below:

Inlaid Magic Square
613 937 983 827 1151 829 967 883 631
701 1103 1013 619 853 1021 691 733 1087
1097 859 617 839 919 769 643 1009 1069
773 727 941 1063 811 653 997 1033 823
857 877 977 821 863 991 929 787 719
1049 607 881 1051 751 709 757 1109 907
661 911 1091 971 673 947 1123 647 797
953 1039 641 743 1061 1093 1031 601 659
1117 761 677 887 739 809 683 1019 1129
Bordered Magic Square
1103 619 701 1013 853 691 1087 1021 733
727 1063 773 941 811 997 823 653 1033
937 827 613 983 1151 967 631 829 883
859 839 1097 617 919 643 1069 769 1009
877 821 857 977 863 929 719 991 787
911 971 661 1091 673 1123 797 947 647
761 887 1117 677 739 683 1129 809 1019
607 1051 1049 881 751 757 907 709 1109
1039 743 953 641 1061 1031 659 1093 601

It should be noted that the reversed transformation is not necessarily possible because of the bottom-left / top-right Main Diagonal.

Each square shown corresponds with numerous Prime Number Magic Squares with the same Magic Sum(s) and variable values.

14.13.7c Inlaid Magic Squares (9 x 9)
         Diamond Inlays Order 4 and 5

Prime Number Inlaid Magic Squares of order 9 with Diamond Inlays can be constructed when the Magic Sum s9 is a multiple of 9.

An example is shown below, for the consecutive prime numbers {601 ... 1151} with the related Magic Sum s9 = 7821.

Inlaid Magic Square
701 1061 971 769 631 1049 821 827 991
839 829 911 1069 727 967 787 809 883
941 659 719 1021 643 1039 1151 887 761
881 797 619 929 653 919 1103 983 937
1129 1109 1123 1051 863 709 617 607 613
691 683 733 673 1063 977 1093 1097 811
1013 953 739 601 1091 743 857 877 947
773 823 997 677 1033 661 751 1087 1019
853 907 1009 1031 1117 757 641 647 859

The Inlaid Magic Square shown above contains:

  • One 4th order Magic Diamond Inlay with Magic Sum s4 = 4 * s9 / 9 = 3476
  • One 5th order Magic Diamond Inlay with Magic Sum s5 = 5 * s9 / 9 = 4345

and corresponds with miscellaneous Prime Number Magic Squares with the same Magic Sum(s) and variable values.

14.13.8 Summary

The obtained results regarding the miscellaneous types of Prime Number Magic Squares as deducted and discussed in previous sections are summarized in following table:

Order

Main Characteristics

Subroutine

Results

4

Consecutive Primes, Simple Magic

Priem4b2

Attachment 14.13.1

5

Consecutive Primes, Simple Magic

Priem5b2

Attachment 14.13.2

6

Consecutive Primes, Simple Magic

CnstrSqrs6

Attachment 14.13.4

Consecutive Primes, Pan    Magic

Priem6b1

-

7

Consecutive Primes, Simple Magic

-

Attachment 14.13.5

8

Consecutive Primes, Simple Magic

-

Attachment 14.13.6

9

Consecutive Primes, Simple Magic

-

Attachment 14.13.7

Following sections will describe how Order 10 Prime Number Magic Squares with Consecutive Primes can be found with comparable routines as described in previous sections.


Vorige Pagina Volgende Pagina Index About the Author