Office Applications and Entertainment, Magic Squares |
||
Attachment 13.2.3 | About the Author |
Construction of a Pan Magic Square M (13 x 13)
Based on a Self Orthogonal Non Cyclic Pan Diagonal Latin Square A
A
7 1 0 3 6 5 12 2 8 9 10 11 4 2 3 4 10 0 7 6 9 12 11 5 8 1 4 11 1 7 8 9 10 3 6 0 12 2 5 6 5 8 11 10 4 7 0 1 2 3 9 12 8 9 2 5 12 11 1 4 3 10 0 6 7 3 6 12 0 1 2 8 11 5 4 7 10 9 10 0 3 2 9 12 5 6 7 8 1 4 11 1 7 10 4 3 6 9 8 2 5 11 12 0 11 4 5 6 7 0 3 10 9 12 2 1 8 5 8 7 1 4 10 11 12 0 6 9 3 2 12 2 9 8 11 1 0 7 10 3 4 5 6 9 10 11 12 5 8 2 1 4 7 6 0 3 0 12 6 9 2 3 4 5 11 1 8 7 10 B = T(A)
7 2 4 6 8 3 10 1 11 5 12 9 0 1 3 11 5 9 6 0 7 4 8 2 10 12 0 4 1 8 2 12 3 10 5 7 9 11 6 3 10 7 11 5 0 2 4 6 1 8 12 9 6 0 8 10 12 1 9 3 7 4 11 5 2 5 7 9 4 11 2 12 6 0 10 1 8 3 12 6 10 7 1 8 5 9 3 11 0 2 4 2 9 3 0 4 11 6 8 10 12 7 1 5 8 12 6 1 3 5 7 2 9 0 10 4 11 9 11 0 2 10 4 8 5 12 6 3 7 1 10 5 12 3 0 7 1 11 2 9 4 6 8 11 8 2 9 6 10 4 12 1 3 5 0 7 4 1 5 12 7 9 11 0 8 2 6 3 10
M = A + 13 * B + 1
99 28 53 82 111 45 143 16 152 75 167 129 5 16 43 148 76 118 86 7 101 65 116 32 139 158 5 64 15 112 35 166 50 134 72 92 130 146 84 46 136 100 155 76 5 34 53 80 16 108 166 130 87 10 107 136 169 25 119 44 95 63 144 72 34 69 98 130 53 145 29 165 90 6 135 21 115 49 167 79 134 94 23 117 71 124 47 152 2 31 64 28 125 50 5 56 150 88 113 133 162 103 26 66 116 161 84 20 47 66 95 37 127 13 133 54 152 123 152 8 28 135 63 116 78 157 85 49 95 16 143 68 166 48 12 93 14 151 37 121 57 84 111 153 115 38 130 84 139 55 158 18 47 72 1 95 53 26 72 166 94 121 148 6 116 28 87 47 141
About the Author |