The solutions can be obtained by guessing the 7 parameters:
a(i) for i = 163, 164, 165, 166, 167, 168 and 169
filling out these guesses in the abovementioned equations, and completing the square
by copying the first row into the following rows, while shifting 2 columns to the right.
With an appropriate guessing routine (UltraLat13) 46080 Ultra Magic Squares can be constructed based on Diagonal Latin Squares type R2.
Comparable results can be obtained for Diagonal Latin Squares type L2, L3, R3, L4, R4, L5, R5, L6 and R6.
13.2.4 Composed Magic Squares
Overlapping Sub Squares
Order 13 Magic Squares, containing order 7 Overlapping Sub Squares with identical Magic Sum,
based on Latin Diagonal Sub Squares, have been discussed in Section 25.5.
Order 15 Magic Squares, containing order 8 Overlapping Sub Squares with identical Magic Sum,
based on Latin Diagonal Sub Squares, have been discussed in Section 25.6.
13.2.5 Concentric Magic Squares
Order 13 Concentric Magic Squares M can be constructed based on pairs of Orthogonal Concentric
Semi-Latin Squares
(A, B),
as shown below for the symbols
{ai, i = 1 ... 13}
and
{bj, j = 1 ... 13).
A
a7 |
a2 |
a3 |
a4 |
a5 |
a6 |
a8 |
a9 |
a10 |
a11 |
a12 |
a13 |
a1 |
a1 |
a7 |
a3 |
a4 |
a5 |
a6 |
a8 |
a9 |
a10 |
a11 |
a12 |
a2 |
a13 |
a1 |
a2 |
a11 |
a4 |
a5 |
a3 |
a6 |
a8 |
a9 |
a10 |
a7 |
a12 |
a13 |
a13 |
a12 |
a3 |
a10 |
a4 |
a5 |
a6 |
a8 |
a9 |
a7 |
a11 |
a2 |
a1 |
a13 |
a12 |
a3 |
a10 |
a9 |
a5 |
a6 |
a8 |
a7 |
a4 |
a11 |
a2 |
a1 |
a1 |
a2 |
a11 |
a4 |
a5 |
a8 |
a6 |
a7 |
a9 |
a10 |
a3 |
a12 |
a13 |
a1 |
a2 |
a11 |
a4 |
a9 |
a6 |
a7 |
a8 |
a5 |
a10 |
a3 |
a12 |
a13 |
a1 |
a2 |
a11 |
a10 |
a5 |
a7 |
a8 |
a6 |
a9 |
a4 |
a3 |
a12 |
a13 |
a13 |
a2 |
a3 |
a4 |
a7 |
a9 |
a8 |
a6 |
a5 |
a10 |
a11 |
a12 |
a1 |
a13 |
a12 |
a3 |
a7 |
a10 |
a9 |
a8 |
a6 |
a5 |
a4 |
a11 |
a2 |
a1 |
a1 |
a12 |
a7 |
a10 |
a9 |
a11 |
a8 |
a6 |
a5 |
a4 |
a3 |
a2 |
a13 |
a13 |
a12 |
a11 |
a10 |
a9 |
a8 |
a6 |
a5 |
a4 |
a3 |
a2 |
a7 |
a1 |
a13 |
a12 |
a11 |
a10 |
a9 |
a8 |
a6 |
a5 |
a4 |
a3 |
a2 |
a1 |
a7 |
|
B
b1 |
b1 |
b1 |
b13 |
b13 |
b13 |
b13 |
b13 |
b13 |
b1 |
b1 |
b1 |
b7 |
b2 |
b2 |
b2 |
b2 |
b12 |
b12 |
b12 |
b12 |
b2 |
b2 |
b12 |
b7 |
b12 |
b8 |
b12 |
b7 |
b11 |
b11 |
b3 |
b3 |
b3 |
b11 |
b11 |
b3 |
b2 |
b6 |
b3 |
b11 |
b10 |
b7 |
b10 |
b4 |
b10 |
b10 |
b4 |
b4 |
b4 |
b3 |
b11 |
b9 |
b10 |
b9 |
b9 |
b7 |
b5 |
b9 |
b9 |
b5 |
b5 |
b5 |
b4 |
b5 |
b4 |
b9 |
b8 |
b8 |
b6 |
b7 |
b6 |
b8 |
b8 |
b6 |
b6 |
b5 |
b10 |
b6 |
b8 |
b6 |
b6 |
b5 |
b8 |
b7 |
b6 |
b9 |
b8 |
b8 |
b6 |
b8 |
b10 |
b6 |
b3 |
b5 |
b8 |
b6 |
b8 |
b7 |
b6 |
b9 |
b11 |
b8 |
b4 |
b5 |
b5 |
b5 |
b4 |
b9 |
b9 |
b5 |
b5 |
b7 |
b10 |
b9 |
b9 |
b9 |
b11 |
b4 |
b4 |
b10 |
b4 |
b10 |
b4 |
b4 |
b10 |
b7 |
b10 |
b10 |
b3 |
b12 |
b3 |
b11 |
b3 |
b3 |
b11 |
b11 |
b11 |
b3 |
b3 |
b7 |
b11 |
b2 |
b13 |
b7 |
b12 |
b12 |
b2 |
b2 |
b2 |
b2 |
b12 |
b12 |
b2 |
b12 |
b1 |
b7 |
b13 |
b13 |
b1 |
b1 |
b1 |
b1 |
b1 |
b1 |
b13 |
b13 |
b13 |
b13 |
|
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A
6 |
1 |
2 |
3 |
4 |
5 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
0 |
6 |
2 |
3 |
4 |
5 |
7 |
8 |
9 |
10 |
11 |
1 |
12 |
0 |
1 |
10 |
3 |
4 |
2 |
5 |
7 |
8 |
9 |
6 |
11 |
12 |
12 |
11 |
2 |
9 |
3 |
4 |
5 |
7 |
8 |
6 |
10 |
1 |
0 |
12 |
11 |
2 |
9 |
8 |
4 |
5 |
7 |
6 |
3 |
10 |
1 |
0 |
0 |
1 |
10 |
3 |
4 |
7 |
5 |
6 |
8 |
9 |
2 |
11 |
12 |
0 |
1 |
10 |
3 |
8 |
5 |
6 |
7 |
4 |
9 |
2 |
11 |
12 |
0 |
1 |
10 |
9 |
4 |
6 |
7 |
5 |
8 |
3 |
2 |
11 |
12 |
12 |
1 |
2 |
3 |
6 |
8 |
7 |
5 |
4 |
9 |
10 |
11 |
0 |
12 |
11 |
2 |
6 |
9 |
8 |
7 |
5 |
4 |
3 |
10 |
1 |
0 |
0 |
11 |
6 |
9 |
8 |
10 |
7 |
5 |
4 |
3 |
2 |
1 |
12 |
12 |
11 |
10 |
9 |
8 |
7 |
5 |
4 |
3 |
2 |
1 |
6 |
0 |
12 |
11 |
10 |
9 |
8 |
7 |
5 |
4 |
3 |
2 |
1 |
0 |
6 |
|
B
0 |
0 |
0 |
12 |
12 |
12 |
12 |
12 |
12 |
0 |
0 |
0 |
6 |
1 |
1 |
1 |
1 |
11 |
11 |
11 |
11 |
1 |
1 |
11 |
6 |
11 |
7 |
11 |
6 |
10 |
10 |
2 |
2 |
2 |
10 |
10 |
2 |
1 |
5 |
2 |
10 |
9 |
6 |
9 |
3 |
9 |
9 |
3 |
3 |
3 |
2 |
10 |
8 |
9 |
8 |
8 |
6 |
4 |
8 |
8 |
4 |
4 |
4 |
3 |
4 |
3 |
8 |
7 |
7 |
5 |
6 |
5 |
7 |
7 |
5 |
5 |
4 |
9 |
5 |
7 |
5 |
5 |
4 |
7 |
6 |
5 |
8 |
7 |
7 |
5 |
7 |
9 |
5 |
2 |
4 |
7 |
5 |
7 |
6 |
5 |
8 |
10 |
7 |
3 |
4 |
4 |
4 |
3 |
8 |
8 |
4 |
4 |
6 |
9 |
8 |
8 |
8 |
10 |
3 |
3 |
9 |
3 |
9 |
3 |
3 |
9 |
6 |
9 |
9 |
2 |
11 |
2 |
10 |
2 |
2 |
10 |
10 |
10 |
2 |
2 |
6 |
10 |
1 |
12 |
6 |
11 |
11 |
1 |
1 |
1 |
1 |
11 |
11 |
1 |
11 |
0 |
6 |
12 |
12 |
0 |
0 |
0 |
0 |
0 |
0 |
12 |
12 |
12 |
12 |
|
|
M = A + 13 * B + 1
7 |
2 |
3 |
160 |
161 |
162 |
164 |
165 |
166 |
11 |
12 |
13 |
79 |
14 |
20 |
16 |
17 |
148 |
149 |
151 |
152 |
23 |
24 |
155 |
80 |
156 |
92 |
145 |
89 |
134 |
135 |
29 |
32 |
34 |
139 |
140 |
33 |
25 |
78 |
39 |
142 |
120 |
88 |
121 |
44 |
123 |
125 |
48 |
46 |
50 |
28 |
131 |
117 |
129 |
107 |
114 |
87 |
57 |
110 |
112 |
59 |
56 |
63 |
41 |
53 |
40 |
106 |
102 |
95 |
70 |
86 |
71 |
98 |
100 |
75 |
68 |
64 |
130 |
66 |
93 |
76 |
69 |
61 |
97 |
85 |
73 |
109 |
101 |
94 |
77 |
104 |
118 |
67 |
37 |
62 |
96 |
72 |
99 |
84 |
74 |
108 |
133 |
103 |
52 |
65 |
54 |
55 |
43 |
111 |
113 |
60 |
58 |
83 |
127 |
115 |
116 |
105 |
143 |
51 |
42 |
124 |
49 |
126 |
47 |
45 |
122 |
82 |
128 |
119 |
27 |
144 |
38 |
137 |
36 |
35 |
141 |
138 |
136 |
31 |
30 |
81 |
132 |
26 |
169 |
90 |
154 |
153 |
22 |
21 |
19 |
18 |
147 |
146 |
15 |
150 |
1 |
91 |
168 |
167 |
10 |
9 |
8 |
6 |
5 |
4 |
159 |
158 |
157 |
163 |
|
A pair of order 13 Orthogonal Semi-Latin Borders can be constructed
for each pair of order 11 Orthogonal Concentric Semi-Latin Squares
(A11, B11),
as found in Section 11.2.3.
Each pair of order 13 Orthogonal Semi-Latin Borders corresponds with 8 * (11!)2 = 1,27468 1016 pairs.
Consequently 3,62137 1044 Concentric Magic Squares can be constructed based on the method described above.
13.2.6 Bordered Magic Squares
Diamond Inlays Order 4 and 5
Order 13 Bordered Magic Squares M can be constructed based on pairs of Orthogonal Bordered
Semi-Latin Squares
(A, B)
for miscellaneous types of Center Squares.
The example shown below is based on Center Squares with order 5 and 6 Diamond Inlays - as discussed in Section 11.2.4 - and the symbols
{ai, i = 1 ... 13}
and
{bj, j = 1 ... 13).
A
a7 |
a2 |
a3 |
a4 |
a5 |
a6 |
a8 |
a9 |
a10 |
a11 |
a12 |
a13 |
a1 |
a1 |
a7 |
a3 |
a4 |
a5 |
a6 |
a8 |
a9 |
a10 |
a11 |
a12 |
a2 |
a13 |
a1 |
a2 |
a4 |
a7 |
a9 |
a3 |
a10 |
a8 |
a6 |
a5 |
a11 |
a12 |
a13 |
a13 |
a12 |
a11 |
a9 |
a7 |
a10 |
a4 |
a3 |
a5 |
a6 |
a8 |
a2 |
a1 |
a13 |
a12 |
a8 |
a7 |
a3 |
a5 |
a6 |
a9 |
a10 |
a11 |
a4 |
a2 |
a1 |
a1 |
a2 |
a4 |
a3 |
a9 |
a8 |
a10 |
a5 |
a11 |
a7 |
a6 |
a12 |
a13 |
a1 |
a2 |
a9 |
a10 |
a11 |
a6 |
a7 |
a8 |
a3 |
a4 |
a5 |
a12 |
a13 |
a1 |
a2 |
a8 |
a7 |
a3 |
a9 |
a4 |
a6 |
a5 |
a11 |
a10 |
a12 |
a13 |
a13 |
a2 |
a10 |
a3 |
a4 |
a5 |
a8 |
a9 |
a11 |
a7 |
a6 |
a12 |
a1 |
a13 |
a12 |
a6 |
a8 |
a9 |
a11 |
a10 |
a4 |
a7 |
a5 |
a3 |
a2 |
a1 |
a1 |
a12 |
a3 |
a9 |
a8 |
a6 |
a4 |
a11 |
a5 |
a7 |
a10 |
a2 |
a13 |
a13 |
a12 |
a11 |
a10 |
a9 |
a8 |
a6 |
a5 |
a4 |
a3 |
a2 |
a7 |
a1 |
a13 |
a12 |
a11 |
a10 |
a9 |
a8 |
a6 |
a5 |
a4 |
a3 |
a2 |
a1 |
a7 |
|
B
b1 |
b1 |
b1 |
b13 |
b13 |
b13 |
b13 |
b13 |
b13 |
b1 |
b1 |
b1 |
b7 |
b2 |
b2 |
b2 |
b2 |
b12 |
b12 |
b12 |
b12 |
b2 |
b2 |
b12 |
b7 |
b12 |
b8 |
b12 |
b3 |
b6 |
b10 |
b8 |
b9 |
b4 |
b8 |
b11 |
b4 |
b2 |
b6 |
b3 |
b11 |
b9 |
b8 |
b3 |
b7 |
b10 |
b3 |
b7 |
b9 |
b7 |
b3 |
b11 |
b9 |
b10 |
b8 |
b9 |
b4 |
b3 |
b11 |
b9 |
b3 |
b7 |
b9 |
b4 |
b5 |
b4 |
b9 |
b6 |
b11 |
b5 |
b9 |
b6 |
b8 |
b5 |
b10 |
b3 |
b5 |
b10 |
b6 |
b8 |
b4 |
b10 |
b8 |
b4 |
b7 |
b10 |
b6 |
b4 |
b10 |
b6 |
b8 |
b10 |
b6 |
b11 |
b4 |
b9 |
b6 |
b8 |
b5 |
b9 |
b3 |
b8 |
b8 |
b4 |
b5 |
b5 |
b5 |
b7 |
b11 |
b5 |
b3 |
b11 |
b10 |
b5 |
b6 |
b9 |
b9 |
b11 |
b4 |
b7 |
b5 |
b7 |
b11 |
b4 |
b7 |
b11 |
b6 |
b5 |
b10 |
b3 |
b12 |
b3 |
b10 |
b3 |
b6 |
b10 |
b5 |
b6 |
b4 |
b8 |
b11 |
b11 |
b2 |
b13 |
b7 |
b12 |
b12 |
b2 |
b2 |
b2 |
b2 |
b12 |
b12 |
b2 |
b12 |
b1 |
b7 |
b13 |
b13 |
b1 |
b1 |
b1 |
b1 |
b1 |
b1 |
b13 |
b13 |
b13 |
b13 |
|
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A
6 |
1 |
2 |
3 |
4 |
5 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
0 |
6 |
2 |
3 |
4 |
5 |
7 |
8 |
9 |
10 |
11 |
1 |
12 |
0 |
1 |
3 |
6 |
8 |
2 |
9 |
7 |
5 |
4 |
10 |
11 |
12 |
12 |
11 |
10 |
8 |
6 |
9 |
3 |
2 |
4 |
5 |
7 |
1 |
0 |
12 |
11 |
7 |
6 |
2 |
4 |
5 |
8 |
9 |
10 |
3 |
1 |
0 |
0 |
1 |
3 |
2 |
8 |
7 |
9 |
4 |
10 |
6 |
5 |
11 |
12 |
0 |
1 |
8 |
9 |
10 |
5 |
6 |
7 |
2 |
3 |
4 |
11 |
12 |
0 |
1 |
7 |
6 |
2 |
8 |
3 |
5 |
4 |
10 |
9 |
11 |
12 |
12 |
1 |
9 |
2 |
3 |
4 |
7 |
8 |
10 |
6 |
5 |
11 |
0 |
12 |
11 |
5 |
7 |
8 |
10 |
9 |
3 |
6 |
4 |
2 |
1 |
0 |
0 |
11 |
2 |
8 |
7 |
5 |
3 |
10 |
4 |
6 |
9 |
1 |
12 |
12 |
11 |
10 |
9 |
8 |
7 |
5 |
4 |
3 |
2 |
1 |
6 |
0 |
12 |
11 |
10 |
9 |
8 |
7 |
5 |
4 |
3 |
2 |
1 |
0 |
6 |
|
B
0 |
0 |
0 |
12 |
12 |
12 |
12 |
12 |
12 |
0 |
0 |
0 |
6 |
1 |
1 |
1 |
1 |
11 |
11 |
11 |
11 |
1 |
1 |
11 |
6 |
11 |
7 |
11 |
2 |
5 |
9 |
7 |
8 |
3 |
7 |
10 |
3 |
1 |
5 |
2 |
10 |
8 |
7 |
2 |
6 |
9 |
2 |
6 |
8 |
6 |
2 |
10 |
8 |
9 |
7 |
8 |
3 |
2 |
10 |
8 |
2 |
6 |
8 |
3 |
4 |
3 |
8 |
5 |
10 |
4 |
8 |
5 |
7 |
4 |
9 |
2 |
4 |
9 |
5 |
7 |
3 |
9 |
7 |
3 |
6 |
9 |
5 |
3 |
9 |
5 |
7 |
9 |
5 |
10 |
3 |
8 |
5 |
7 |
4 |
8 |
2 |
7 |
7 |
3 |
4 |
4 |
4 |
6 |
10 |
4 |
2 |
10 |
9 |
4 |
5 |
8 |
8 |
10 |
3 |
6 |
4 |
6 |
10 |
3 |
6 |
10 |
5 |
4 |
9 |
2 |
11 |
2 |
9 |
2 |
5 |
9 |
4 |
5 |
3 |
7 |
10 |
10 |
1 |
12 |
6 |
11 |
11 |
1 |
1 |
1 |
1 |
11 |
11 |
1 |
11 |
0 |
6 |
12 |
12 |
0 |
0 |
0 |
0 |
0 |
0 |
12 |
12 |
12 |
12 |
|
|
M = A + 13 * B + 1
7 |
2 |
3 |
160 |
161 |
162 |
164 |
165 |
166 |
11 |
12 |
13 |
79 |
14 |
20 |
16 |
17 |
148 |
149 |
151 |
152 |
23 |
24 |
155 |
80 |
156 |
92 |
145 |
30 |
72 |
126 |
94 |
114 |
47 |
97 |
135 |
50 |
25 |
78 |
39 |
142 |
115 |
100 |
33 |
88 |
121 |
29 |
83 |
110 |
86 |
28 |
131 |
117 |
129 |
99 |
111 |
42 |
31 |
136 |
113 |
36 |
89 |
108 |
41 |
53 |
40 |
106 |
69 |
133 |
61 |
112 |
75 |
96 |
63 |
124 |
32 |
64 |
130 |
66 |
93 |
48 |
127 |
102 |
45 |
85 |
125 |
68 |
43 |
122 |
77 |
104 |
118 |
67 |
138 |
46 |
107 |
74 |
95 |
58 |
109 |
37 |
101 |
103 |
52 |
65 |
54 |
62 |
81 |
134 |
57 |
34 |
139 |
128 |
59 |
71 |
116 |
105 |
143 |
51 |
84 |
60 |
87 |
141 |
49 |
82 |
137 |
70 |
55 |
119 |
27 |
144 |
38 |
120 |
35 |
73 |
123 |
56 |
76 |
44 |
98 |
140 |
132 |
26 |
169 |
90 |
154 |
153 |
22 |
21 |
19 |
18 |
147 |
146 |
15 |
150 |
1 |
91 |
168 |
167 |
10 |
9 |
8 |
6 |
5 |
4 |
159 |
158 |
157 |
163 |
|
A pair of order 13 Orthogonal Semi-Latin Borders can be constructed
for each pair of order 11 Orthogonal Concentric Semi-Latin Squares
(A11, B11),
as found in Section 11.2.4.
Each pair of order 13 Orthogonal Semi-Latin Borders corresponds with 8 * (11!)2 = 1,27468 1016 pairs.
Consequently 2,92735 1031 Bordered Magic Squares can be constructed based on the method described above.
Diamond Inlays Order 5 and 6
The example shown below is based on Center Squares with order 5 and 6 Diamond Inlays - as discussed in Section 11.2.6 - and the symbols
{ai, i = 1 ... 13}
and
{bj, j = 1 ... 13).
A
a7 |
a2 |
a3 |
a4 |
a5 |
a6 |
a8 |
a9 |
a10 |
a11 |
a12 |
a13 |
a1 |
a1 |
a10 |
a12 |
a6 |
a5 |
a9 |
a3 |
a7 |
a2 |
a4 |
a8 |
a11 |
a13 |
a1 |
a6 |
a3 |
a2 |
a9 |
a5 |
a12 |
a10 |
a4 |
a7 |
a8 |
a11 |
a13 |
a13 |
a7 |
a3 |
a12 |
a2 |
a6 |
a10 |
a11 |
a9 |
a4 |
a5 |
a8 |
a1 |
a13 |
a8 |
a12 |
a9 |
a5 |
a10 |
a3 |
a4 |
a2 |
a6 |
a11 |
a7 |
a1 |
a1 |
a4 |
a11 |
a2 |
a7 |
a8 |
a10 |
a5 |
a9 |
a6 |
a12 |
a3 |
a13 |
a1 |
a12 |
a10 |
a3 |
a5 |
a6 |
a7 |
a8 |
a9 |
a11 |
a4 |
a2 |
a13 |
a1 |
a11 |
a2 |
a8 |
a5 |
a9 |
a4 |
a6 |
a7 |
a12 |
a3 |
a10 |
a13 |
a13 |
a7 |
a3 |
a8 |
a12 |
a10 |
a11 |
a4 |
a9 |
a5 |
a2 |
a6 |
a1 |
a13 |
a6 |
a9 |
a10 |
a5 |
a3 |
a4 |
a8 |
a12 |
a2 |
a11 |
a7 |
a1 |
a1 |
a3 |
a6 |
a7 |
a10 |
a4 |
a2 |
a9 |
a5 |
a12 |
a11 |
a8 |
a13 |
a13 |
a3 |
a6 |
a10 |
a12 |
a7 |
a11 |
a5 |
a9 |
a8 |
a2 |
a4 |
a1 |
a13 |
a12 |
a11 |
a10 |
a9 |
a8 |
a6 |
a5 |
a4 |
a3 |
a2 |
a1 |
a7 |
|
B
b1 |
b1 |
b1 |
b13 |
b13 |
b13 |
b13 |
b13 |
b13 |
b1 |
b1 |
b1 |
b7 |
b2 |
b10 |
b6 |
b7 |
b8 |
b4 |
b12 |
b11 |
b7 |
b6 |
b3 |
b3 |
b12 |
b8 |
b12 |
b3 |
b3 |
b12 |
b11 |
b10 |
b2 |
b3 |
b9 |
b6 |
b6 |
b6 |
b3 |
b6 |
b2 |
b12 |
b9 |
b2 |
b3 |
b8 |
b8 |
b10 |
b7 |
b10 |
b11 |
b9 |
b5 |
b9 |
b2 |
b5 |
b7 |
b5 |
b5 |
b12 |
b5 |
b10 |
b12 |
b5 |
b4 |
b9 |
b5 |
b6 |
b10 |
b8 |
b6 |
b9 |
b10 |
b3 |
b4 |
b7 |
b10 |
b6 |
b3 |
b12 |
b10 |
b3 |
b10 |
b7 |
b4 |
b11 |
b4 |
b2 |
b11 |
b8 |
b10 |
b7 |
b10 |
b11 |
b4 |
b5 |
b8 |
b6 |
b4 |
b8 |
b9 |
b5 |
b4 |
b5 |
b2 |
b4 |
b9 |
b2 |
b9 |
b9 |
b7 |
b9 |
b12 |
b5 |
b9 |
b9 |
b11 |
b4 |
b7 |
b4 |
b6 |
b6 |
b11 |
b12 |
b5 |
b2 |
b12 |
b8 |
b3 |
b12 |
b8 |
b8 |
b5 |
b11 |
b12 |
b4 |
b3 |
b2 |
b11 |
b11 |
b2 |
b2 |
b13 |
b11 |
b11 |
b8 |
b7 |
b3 |
b2 |
b10 |
b6 |
b7 |
b8 |
b4 |
b1 |
b7 |
b13 |
b13 |
b1 |
b1 |
b1 |
b1 |
b1 |
b1 |
b13 |
b13 |
b13 |
b13 |
|
All pairs of the resulting square (A, B) are distinct, as illustrated by following numerical example:
A
6 |
1 |
2 |
3 |
4 |
5 |
7 |
8 |
9 |
10 |
11 |
12 |
0 |
0 |
9 |
11 |
5 |
4 |
8 |
2 |
6 |
1 |
3 |
7 |
10 |
12 |
0 |
5 |
2 |
1 |
8 |
4 |
11 |
9 |
3 |
6 |
7 |
10 |
12 |
12 |
6 |
2 |
11 |
1 |
5 |
9 |
10 |
8 |
3 |
4 |
7 |
0 |
12 |
7 |
11 |
8 |
4 |
9 |
2 |
3 |
1 |
5 |
10 |
6 |
0 |
0 |
3 |
10 |
1 |
6 |
7 |
9 |
4 |
8 |
5 |
11 |
2 |
12 |
0 |
11 |
9 |
2 |
4 |
5 |
6 |
7 |
8 |
10 |
3 |
1 |
12 |
0 |
10 |
1 |
7 |
4 |
8 |
3 |
5 |
6 |
11 |
2 |
9 |
12 |
12 |
6 |
2 |
7 |
11 |
9 |
10 |
3 |
8 |
4 |
1 |
5 |
0 |
12 |
5 |
8 |
9 |
4 |
2 |
3 |
7 |
11 |
1 |
10 |
6 |
0 |
0 |
2 |
5 |
6 |
9 |
3 |
1 |
8 |
4 |
11 |
10 |
7 |
12 |
12 |
2 |
5 |
9 |
11 |
6 |
10 |
4 |
8 |
7 |
1 |
3 |
0 |
12 |
11 |
10 |
9 |
8 |
7 |
5 |
4 |
3 |
2 |
1 |
0 |
6 |
|
B
0 |
0 |
0 |
12 |
12 |
12 |
12 |
12 |
12 |
0 |
0 |
0 |
6 |
1 |
9 |
5 |
6 |
7 |
3 |
11 |
10 |
6 |
5 |
2 |
2 |
11 |
7 |
11 |
2 |
2 |
11 |
10 |
9 |
1 |
2 |
8 |
5 |
5 |
5 |
2 |
5 |
1 |
11 |
8 |
1 |
2 |
7 |
7 |
9 |
6 |
9 |
10 |
8 |
4 |
8 |
1 |
4 |
6 |
4 |
4 |
11 |
4 |
9 |
11 |
4 |
3 |
8 |
4 |
5 |
9 |
7 |
5 |
8 |
9 |
2 |
3 |
6 |
9 |
5 |
2 |
11 |
9 |
2 |
9 |
6 |
3 |
10 |
3 |
1 |
10 |
7 |
9 |
6 |
9 |
10 |
3 |
4 |
7 |
5 |
3 |
7 |
8 |
4 |
3 |
4 |
1 |
3 |
8 |
1 |
8 |
8 |
6 |
8 |
11 |
4 |
8 |
8 |
10 |
3 |
6 |
3 |
5 |
5 |
10 |
11 |
4 |
1 |
11 |
7 |
2 |
11 |
7 |
7 |
4 |
10 |
11 |
3 |
2 |
1 |
10 |
10 |
1 |
1 |
12 |
10 |
10 |
7 |
6 |
2 |
1 |
9 |
5 |
6 |
7 |
3 |
0 |
6 |
12 |
12 |
0 |
0 |
0 |
0 |
0 |
0 |
12 |
12 |
12 |
12 |
|
|
M = A + 13 * B + 1
7 |
2 |
3 |
160 |
161 |
162 |
164 |
165 |
166 |
11 |
12 |
13 |
79 |
14 |
127 |
77 |
84 |
96 |
48 |
146 |
137 |
80 |
69 |
34 |
37 |
156 |
92 |
149 |
29 |
28 |
152 |
135 |
129 |
23 |
30 |
111 |
73 |
76 |
78 |
39 |
72 |
16 |
155 |
106 |
19 |
36 |
102 |
100 |
121 |
83 |
125 |
131 |
117 |
60 |
116 |
22 |
57 |
88 |
55 |
56 |
145 |
58 |
128 |
150 |
53 |
40 |
108 |
63 |
67 |
124 |
99 |
75 |
109 |
126 |
32 |
51 |
81 |
130 |
66 |
38 |
153 |
120 |
31 |
123 |
85 |
47 |
139 |
50 |
17 |
132 |
104 |
118 |
89 |
119 |
138 |
44 |
61 |
95 |
71 |
46 |
103 |
107 |
62 |
52 |
65 |
20 |
42 |
112 |
25 |
114 |
115 |
82 |
113 |
148 |
54 |
110 |
105 |
143 |
45 |
87 |
49 |
70 |
68 |
134 |
151 |
64 |
15 |
154 |
98 |
27 |
144 |
94 |
97 |
59 |
140 |
147 |
41 |
35 |
18 |
142 |
141 |
21 |
26 |
169 |
133 |
136 |
101 |
90 |
33 |
24 |
122 |
74 |
86 |
93 |
43 |
1 |
91 |
168 |
167 |
10 |
9 |
8 |
6 |
5 |
4 |
159 |
158 |
157 |
163 |
|
A pair of order 13 Orthogonal Semi-Latin Borders can be constructed
for each pair of order 11 Orthogonal Concentric Semi-Latin Squares
(A11, B11),
as found in Section 11.2.6.
Each pair of order 13 Orthogonal Semi-Latin Borders corresponds with 8 * (11!)2 = 1,27468 1016 pairs.
Consequently n11 * 1,27468 1016 Bordered Magic Squares can be constructed based on the method described above
(n11 = possible number of order 11 Associated Center Squares with order 5 and 6 Diamond Inlays).
13.2.7 Lozenge Magic Squares
Order 13 Associated Lozenge Squares based on Latin Squares have been discussed in Section 18.7.1.
Order 15 Associated Lozenge Squares based on Latin Squares have been discussed in Section 18.8.1.
13.3 Summary
The obtained results regarding the order 13 (Semi) Latin - and related Magic Squares,
as deducted and discussed in previous sections, are summarized in following table:
Comparable methods as described above, can be used to construct higher order (Semi) Latin - and related (Pan) Magic Squares,
which will be described in following sections.
|