Office Applications and Entertainment, Magic Cubes | ||
Index | About the Author |
Plane 11 (Top)
|
|||||||||||||||||||||||||||
Plane 12
|
|||||||||||||||||||||||||||
Plane 13
|
|||||||||||||||||||||||||||
Plane 14
|
|||||||||||||||||||||||||||
Plane 15
|
4.2a Analytic Solution, Perfect Magic Cubes
In general Magic Cubes of order 5 can be represented as follows:
|
Plane 11 (Top)
|
|||||||||||||||||||||||||||
Plane 12
|
|||||||||||||||||||||||||||
Plane 13
|
|||||||||||||||||||||||||||
Plane 14
|
|||||||||||||||||||||||||||
Plane 15
|
|
Rows:
a101 + a102 + a103 + a104 + a105 = 315
Plane Diagonals:
a101 + a107 + a113 + a119 + a125 = 315
Space Diagonals:
a21 + a42 + a63 + a84 + a105 = 315 |
Columns:
a101 + a106 + a111 + a116 + a121 = 315 |
Pillars:
a101 + a76 + a51 + a26 + a1 = 315 |
a(121) = 315 - a(122) - a(123) - a(124) - a(125) a(116) = 315 - a(117) - a(118) - a(119) - a(120) a(113) = 1575 - 2 * a(114) - 2 * a(115) - 2 * a(118) - 4 * a(119) - 4 * a(120) - 2 * a(123) - 4 * a(124) - 4 * a(125) a(111) = 315 - a(112) - a(113) - a(114) - a(115) a(109) = a(110) - a(113) + a(115) - a(117) + a(120) - a(121) + a(125) a(108) = 315 - 4 * a(110) + a(112) + 3 * a(113) + a(114) - 4 * a(116) - a(118) a(107) = a(109) - a(112) + a(114) - a(117) + a(119) - 2 * a(122) + 2 * a(124) a(106) = 315 - a(107) - a(108) - a(109) - a(110) a(105) = 315 - a(109) - a(113) - a(117) - a(121) a(104) = 315 - a(109) - a(114) - a(119) - a(124) a(103) = 315 - a(108) - a(113) - a(118) - a(123) a(102) = 315 - a(107) - a(112) - a(117) - a(122) a(101) = 315 - a(102) - a(103) - a(104) - a(105) a( 96) = 315 - a( 97) - a( 98) - a( 99) - a(100) a( 93) = 1050 - 2 * {a( 94) + a( 95) + a(125)} - a(123) + {-2 * a(98) - 4 * a(99) - 4 * a(100) - a(112) + a(114) + - 4 * a(117) - 2 * a(118) - 4 * a(120) - 5 * a(122) - a(124)}/3 a( 92) = 315 - a( 93) - a( 94) - 2 * a(95) + 2 * {a(96) - a(100) + a(116) - a(120)}/3 + a(121) - a(125) a( 91) = 315 - a( 92) - a( 93) - a( 94) - a(95) a( 89) = a( 93) - a(115) + a(123) + { -2 * a(90) + 2 * a(95) + 2 * a(98) - 2 * a(99) + a(108) - a(110) - a(112) + - a(114) + a(118) - a(120) + a(122) + a(124)}/3 a( 88) = - 2 * a(89) - 2 * a(90) + a(93) + 2 * a(94) + 2 * a(95) + a(111) - a(115) - a(121) + a(125) a( 87) = a( 89) + a( 92) - a( 94) a( 86) = 315 - a( 87) - a( 88) - a( 89) - a( 90) a( 85) =-2898 - a( 90) - a( 97) - a( 98) + { 18 * a(94) + 7 * a(95) + 7 * a(99) - 2 * a(100) + 10 * a(110) + 12 * a(114) + + 18 * a(115) + 12 * a(118) + 24 * a(119) + 34 * a(120) + 10 * a(122) + 18 * a(123) + 34 * a(124) + 48 * a(125)}/5 a( 84) = a( 85) - a( 88) + a( 90) - a( 92) + a(95) - a(96) + a(100) a( 83) = 945 - a( 87) - a( 94) - 1.5 * { a( 85) + a(90) + a(95) + a(97) + a(98) + a( 99) + 2 * a(100)} a( 82) = {315 - a( 83) - a( 84) - a( 85) + a( 86) - a(88) + a(91) - a(94) + a(96) - a(100)}/2 a( 81) = 315 - a( 82) - a( 83) - a( 84) - a( 85) a( 80) = 315 - a( 84) - a( 88) - a( 92) - a( 96) a( 79) = 315 - a( 84) - a( 89) - a( 94) - a( 99) a( 78) = 315 - a( 83) - a( 88) - a( 93) - a( 98) a( 77) = 315 - a( 82) - a( 87) - a( 92) - a( 97) a( 76) = 315 - a( 77) - a( 78) - a( 79) - a( 80) a( 75) = 63 + a( 76) - a(100) + a(101) - a(125) a( 74) = 63 + a( 77) - a( 99) + a(102) - a(122) a( 73) = 378 + a( 79) - a( 99) - a(110) - a(115) - a(120) - 2 * a(125) a( 72) = a( 74) + a(112) - a(114) - 2 * {a(97) - a(99) - a(117) + a(119) - a(122) + a(124)} a( 71) = 315 - a( 72) - a( 73) - a( 74) - a( 75) a( 70) = 63 + a( 81) - a( 95) + a(116) - a(120) a( 69) = 63 + a( 82) - a( 94) a( 68) = - 63 + a( 69) + a( 70) - a( 81) - a( 92) + a(94) + a(95) - a(116) + a(120) a( 67) = 63 + a( 84) - a( 92) a( 66) = 315 - a( 67) - a( 68) - a( 69) - a( 70) a( 65) = 63 + a( 91) - a( 95) + a(121) - a(125) a( 64) = 63 + a( 92) - a( 94)
The linear equations shown above, are ready to be solved, for the magic constant 315.
0 < a(i) =< 125 for i = 1 ... 89, 91 ... 93, 96
which can be incorporated in a guessing routine, which might be used to find other 5th order Perfect Magic Cubes.
4.2b Additional Solutions, Perfect Magic Cubes
Although the total number of independent variables is too large to find much more results within a reasonable time,
an appropriate guessing routine (MgcCube5a2)
produced - based on the top squares of eight earlier published Perfect Magic Cubes - eight additional Perfect Magic Cubes (ca. 650 seconds per known top square).
4.2c More Transformations, Perfect Magic Cubes
Comparable with 5th order Magic Squares (ref. 'Magic Squares' Section 3.5), Perfect Magic Cubes of order 5 might be subject to following transformations:
Note: Secondary properties, like the applied symmetry, are not invariant to the transformations described above.
|
Index | About the Author |