Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
7.9 Bent Diagonals
Harrey White studied in 2002 Magic Squares of order 7 for which the numbers of the four Main Bent Diagonals and the Bent Diagonals parallel to it sum to the Magic Sum and found 21446 unique results for a(1) = 1 thru 22.
7.9.2 Analysis, Magic Squares, Bent Diagonals
Magic Squares for which all Bent Diagonals sum to the Magic Sum are described by following set of linear equations: a(44) = 100 - a(45) - a(47) - a(48) a(43) = 75 - a(46) - a(49) a(39) = 75 - a(45) - a(47) a(37) = 100 - a(38) - a(40) - a(41) a(36) = - a(42) + a(45) + a(47) a(33) = 75 - a(41) - a(49) a(32) = 50 - a(38) - a(40) + a(45) - a(46) + a(47) a(31) = -100 + a(38) + a(40) + a(41) + a(46) + a(49) a(30) = 125 - a(34) - a(38) - a(40) - a(46) a(29) = 25 - a(35) + a(38) + a(40) - a(45) + a(46) - a(47) a(25) = 25 a(23) = 100 - a(24) - a(26) - a(27) a(22) = 50 - a(28) a(21) = 75 - a(27) - a(35) a(20) = 125 - a(26) - a(27) - a(28) - a(34) a(19) = 25 - a(26) - a(27) + a(41) + a(49) a(18) = 50 - a(24) - a(26) + a(38) + a(40) - a(45) + a(46) - a(47) a(17) = 100 + a(26) + a(27) - a(38) - a(40) - a(41) - a(46) - a(49) a(16) = -150 + a(26) + a(27) + a(28) + a(34) + a(38) + a(40) + a(46) a(15) = - 50 + a(24) + a(26) + a(27) + a(35) - a(38) - a(40) + a(45) - a(46) + a(47) a(14) = 25 + a(27) - a(42) a(13) = - 25 + a(26) + a(27) + a(28) - a(41) a(12) = a(26) + a(27) - a(40) a(11) = - 75 + a(24) + a(26) + a(45) + a(47) a(10) = 100 - a(26) - a(27) - a(38) a( 9) = 25 - a(26) - a(27) - a(28) + a(38) + a(40) + a(41) a( 8) = 125 - a(24) - a(26) - a(27) + a(42) - a(45) - a(47) a( 7) = 75 - a(28) - a(49) a( 6) = 75 - a(27) - a(48) a( 5) = 75 - a(26) - a(47) a( 4) = 50 - a(46) a( 3) = 75 - a(24) - a(45) a( 2) = -125 + a(24) + a(26) + a(27) + a(45) + a(47) + a(48) a( 1) = - 50 + a(28) + a(46) + a(49)
An optimized guessing routine (MgcSqr7d1), might produce all 171568 (= 8 * 21446) possible
solutions, however not within a reasonable time.
Following sections will deal with a few - more strict defined - sub collections of subject Magic Squares.
7.9.3 Analysis, Magic Squares, Bent Diagonals, When the symmetry conditions for the Axes and Main Diagonals are added to the equations describing a Magic Square for which all Bent Diagonals sum to the Magic Sum (ref. Section 7.9.2), the resulting square is described by following set of linear equations: a(44) = 100 - a(45) - a(47) - a(48) a(43) = 75 - a(46) - a(49) a(39) = 75 - a(45) - a(47) a(37) = 100 - a(38) - a(40) - a(41) a(36) = - a(42) + a(45) + a(47) a(33) = 75 - a(41) - a(49) a(32) = 50 - a(38) - a(40) + a(45) - a(46) + a(47) a(31) = -100 + a(38) + a(40) + a(41) + a(46) + a(49) a(30) = 125 - a(34) - a(38) - a(40) - a(46) a(29) = 25 - a(35) + a(38) + a(40) - a(45) + a(46) - a(47) a(28) = 100 - a(46) - 2 * a(49) a(26) = -125 - a(27) + a(38) + a(40) + 2 * a(41) + a(46) + 2 * a(49) a(25) = 25 a(21) = 75 - a(27) - a(35) a(20) = 150 - a(34) - a(38) - a(40) - 2 * a(41) a(16) = -175 + a(34) + 2 * a(38) + 2 * a(40) + 2 * a(41) + a(46) a(15) = a(27) + a(35) - a(38) - a(40) + a(45) - a(46) + a(47) a(14) = 25 + a(27) - a(42) a(12) = -125 + a(38) + 2 * a(41) + a(46) + 2 * a(49) a(10) = 225 - 2 * a(38) - a(40) - 2 * a(41) - a(46) - 2 * a(49) a( 8) = 75 - a(27) + a(42) - a(45) - a(47) a( 6) = 75 - a(27) - a(48) a( 5) = 200 + a(27) - a(38) - a(40) - 2 * a(41) - a(46) - a(47) - 2 * a(49) a( 3) = -100 - a(27) + a(38) + a(40) + 2 * a(41) - a(45) + a(46) + 2 * a(49) a( 2) = 25 + a(27) - a(44)
An optimized guessing routine (MgcSqr7d2), produced the 400 (= 8 * 50) possible solutions,
which are shown in Attachment 7.8.2a.
7.9.4 Analysis, Pan Magic Squares, Bent Diagonals
Pan Magic Squares for which all Bent Diagonals sum to the Magic Sum are described by following set of linear equations: a(44) = 100 - a(45) - a(47) - a(48) a(43) = 75 - a(46) - a(49) a(39) = 75 - a(45) - a(47) a(37) = 100 - a(38) - a(40) - a(41) a(36) = - a(42) + a(45) + a(47) a(35) = 50 - a(41) + a(42) - a(47) + a(48) - a(49) a(34) = 75 - a(40) - a(42) - a(48) + a(49) a(33) = 75 - a(41) - a(49) a(32) = 50 - a(38) - a(40) + a(45) - a(46) + a(47) a(31) = -100 + a(38) + a(40) + a(41) + a(46) + a(49) a(30) = 50 - a(38) + a(42) - a(46) + a(48) - a(49) a(29) = - 25 + a(38) + a(40) + a(41) - a(42) - a(45) + a(46) - a(48) + a(49) a(25) = 25 a(23) = 100 - a(24) - a(26) - a(27) a(22) = 50 - a(28) a(21) = 25 - a(27) + a(41) - a(42) + a(47) - a(48) + a(49) a(20) = 50 - a(26) - a(27) - a(28) + a(40) + a(42) + a(48) - a(49) a(19) = 25 - a(26) - a(27) + a(41) + a(49) a(18) = 50 - a(24) - a(26) + a(38) + a(40) - a(45) + a(46) - a(47) a(17) = 100 + a(26) + a(27) - a(38) - a(40) - a(41) - a(46) - a(49) a(16) = - 75 + a(26) + a(27) + a(28) + a(38) - a(42) + a(46) - a(48) + a(49) a(15) = a(24) + a(26) + a(27) - a(38) - a(40) - a(41) + a(42) + a(45) - a(46) + a(48) - a(49) a(14) = 25 + a(27) - a(42) a(13) = - 25 + a(26) + a(27) + a(28) - a(41) a(12) = a(26) + a(27) - a(40) a(11) = - 75 + a(24) + a(26) + a(45) + a(47) a(10) = 100 - a(26) - a(27) - a(38) a( 9) = 25 - a(26) - a(27) - a(28) + a(38) + a(40) + a(41) a( 8) = 125 - a(24) - a(26) - a(27) + a(42) - a(45) - a(47) a( 7) = 75 - a(28) - a(49) a( 6) = 75 - a(27) - a(48) a( 5) = 75 - a(26) - a(47) a( 4) = 50 - a(46) a( 3) = 75 - a(24) - a(45) a( 2) = -125 + a(24) + a(26) + a(27) + a(45) + a(47) + a(48) a( 1) = - 50 + a(28) + a(46) + a(49)
An optimized guessing routine (MgcSqr7d3), produced the 112 (= 8 * 14) possible solutions, which are shown in Attachment 7.8.3.
7.9.5 Analysis, Pan Magic Squares, Bent Diagonals, When the symmetry conditions for the Axes and Main Diagonals are added to the equations describing a Pan Magic Square for which all Bent Diagonals sum to the Magic Sum (ref. Section 7.9.4), the resulting square is described by following set of linear equations: a(44) = 100 - a(45) - a(47) - a(48) a(43) = 75 - a(46) - a(49) a(39) = 75 - a(45) - a(47) a(37) = 100 - a(38) - a(40) - a(41) a(36) = - a(42) + a(45) + a(47) a(35) = 50 - a(41) + a(42) - a(47) + a(48) - a(49) a(34) = 75 - a(40) - a(42) - a(48) + a(49) a(32) = 50 - a(38) - a(40) + a(45) - a(46) + a(47) a(31) = -100 + a(38) + a(40) + a(41) + a(46) + a(49) a(30) = 50 - a(38) + a(42) - a(46) + a(48) - a(49) a(29) = - 25 + a(38) + a(40) + a(41) - a(42) - a(45) + a(46) - a(48) + a(49) a(28) = 100 - a(46) - 2 * a(49) a(26) = -125 - a(27) + a(38) + a(40) + 2 * a(41) + a(46) + 2 * a(49) a(21) = 25 - a(27) + a(41) - a(42) + a(47) - a(48) + a(49) a(20) = 75 - a(38) - 2 * a(41) + a(42) + a(48) - a(49) a(16) = -100 + 2 * a(38) + a(40) + 2 * a(41) - a(42) + a(46) - a(48) + a(49) a(15) = 50 + a(27) - a(38) - a(40) - a(41) + a(42) + a(45) - a(46) + a(48) - a(49) a(14) = 25 + a(27) - a(42) a(12) = -125 + a(38) + 2 * a(41) + a(46) + 2 * a(49) a(10) = 225 - 2 * a(38) - a(40) - 2 * a(41) - a(46) - 2 * a(49) a( 8) = 75 - a(27) + a(42) - a(45) - a(47) a( 6) = 75 - a(27) - a(48) a( 5) = 200 + a(27) - a(38) - a(40) - 2 * a(41) - a(46) - a(47) - 2 * a(49) a( 3) = -100 - a(27) + a(38) + a(40) + 2 * a(41) - a(45) + a(46) + 2 * a(49) a( 2) = - 75 + a(27) + a(45) + a(47) + a(48)
An optimized guessing routine (MgcSqr7d4), produced the 16 (= 8 * 2) possible solutions,
which are shown in Attachment 7.8.4.
7.9.6 Analysis, Magic Squares, Bent Diagonals,
It can be proven that Magic Squares for which all Bent Diagonals sum to the Magic Sum can't be Associated.
a(44) = 100 - a(45) - a(47) - a(48) a(43) = 75 - a(46) - a(49) a(39) = 75 - a(45) - a(47) a(38) = (175 - 2 * a(41) -a(46) - 2 * a(49))/2 a(37) = 100 - a(38) - a(40) - a(41) a(35) = 100 - a(41) - a(47) - a(49) a(34) = 25 - a(40) + a(49) a(33) = 75 - a(41) - a(49) a(32) = 50 - a(38) - a(40) + a(45) - a(46) + a(47) a(31) = 75 - a(38) + a(40) - a(41) - a(49) a(30) = 25 - a(37) - a(40) + a(41) + a(49) a(29) = 100 - a(38) + a(40) - a(41) - a(45) - a(49) a(28) = 100 - a(46) - 2 * a(49) a(27) = 25 - a(38) + a(40) - a(45) + a(47) a(26) = 25 + a(45) - a(47) a(14) = - a(38) + a(40) - a(45) + a(47) + a(48) a( 8) = 100 - a(14) - a(45) - a(47)
An optimized guessing routine (MgcSqr7d5), produced the 16 (= 8 * 2) possible solutions,
which are shown in Attachment 7.8.2b.
Consequential properties resulting from the defining properties of 7th order Magic Squares for which the Bent Diagonals sum to the Magic Sum are summarised and illustrated in Attachment 7.8.5.
The linear equations deducted in previous sections, have been applied in following Excel Spread Sheets:
Only the red figures have to be “guessed” to construct one of the applicable Magic Squares of the 7th order
(wrong solutions are obvious).
|
Index | About the Author |