Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
9.4.2 Further Analysis, Compact Associated Pan Magic Squares
The symmetry applied in the deduction on previous page was limited to the Main Diagonals.
a(79) = 123 - a(80) - a(81) a(76) = 123 - a(77) - a(78) a(73) = 123 - a(74) - a(75) a(70) = 123 - a(71) - a(72) a(69) = a(72) + a(74) + a(75) - a(77) - 2 * a(78) + a(81) a(68) = a(71) - a(74) + a(80) a(67) = 123 - a(71) - a(72) - a(75) + a(77) + 2 * a(78) - a(80) - a(81) a(66) = a(72) + a(74) - a(80) a(65) = a(71) - 2 * a(74) + 2 * a(80) a(64) = 123 - a(71) - a(72) + a(74) - a(80) a(63) = 123 - a(72) - a(81) a(62) = 123 - a(71) - a(80) a(61) =-123 + a(71) + a(72) + a(80) + a(81) a(60) = 123 - a(72) - a(74) - a(75) + a(77) + a(78) - a(81) a(59) = 123 - a(71) + a(74) - a(77) - a(80) a(58) =-123 + a(71) + a(72) + a(75) - a(78) + a(80) + a(81) a(57) = 123 - a(72) - a(74) - a(75) + a(80) a(56) = 123 - a(71) + a(74) - 2 * a(80) a(55) =-123 + a(71) + a(72) + a(75) + a(80) a(54) = -82 + a(71) + a(72) - a(78) + a(80) + a(81) a(53) = 164 - a(71) - a(77) - a(80) a(52) = 41 - a(72) + a(77) + a(78) - 1 * a(81) a(51) = -82 + a(71) + a(72) + a(80) a(50) = 164 - a(71) - 2 * a(80) a(49) = 41 - a(72) + a(80) a(48) = -82 + a(71) + a(72) + a(75) - a(78) + a(80) a(47) = 164 - a(71) + a(74) - a(77) - 2 * a(80) a(46) = 41 - a(72) - a(74) - a(75) + a(77) + a(78) + a(80) a(45) = 164 - a(71) - 2 * a(72) - a(74) - a(75) + a(77) + 2 * a(78) - a(81) a(44) = 41 + a(74) - a(80) a(43) = -82 + a(71) + 2 * a(72) + a(75) - a(77) - 2 * a(78) + a(80) + a(81) a(42) = 164 - a(71) - 2 * a(72) a(41) = 41
which can be applied in an Excel spreadsheet (Ref. CnstrSngl9b2) and an appropriate guessing routine
(MgcSqr9g).
9.4.3 Further Analysis, Compact Pan Magic Squares
The applicable equations for Compact Pan Magic Squares are: a(73) = s1 - a(74) - a(75) - a(76) - a(77) - a(78) - a(79) - a(80) - a(81) a(64) = s1 - a(65) - a(66) - a(67) - a(68) - a(69) - a(70) - a(71) - a(72) a(61) = s1 - a(62) - a(63) - a(70) - a(71) - a(72) - a(79) - a(80) - a(81) a(60) = s1 - a(61) - a(62) - a(69) - a(70) - a(71) - a(78) - a(79) - a(80) a(59) = s1 - a(60) - a(61) - a(68) - a(69) - a(70) - a(77) - a(78) - a(79) a(58) = s1 - a(59) - a(60) - a(67) - a(68) - a(69) - a(76) - a(77) - a(78) a(57) = s1 - a(58) - a(59) - a(66) - a(67) - a(68) - a(75) - a(76) - a(77) a(56) = s1 - a(57) - a(58) - a(65) - a(66) - a(67) - a(74) - a(75) - a(76) a(55) = s1 - a(56) - a(57) - a(64) - a(65) - a(66) - a(73) - a(74) - a(75) a(52) = s1 - a(53) - a(54) - a(61) - a(62) - a(63) - a(70) - a(71) - a(72) a(51) = s1 - a(52) - a(53) - a(60) - a(61) - a(62) - a(69) - a(70) - a(71) a(50) = s1 - a(51) - a(52) - a(59) - a(60) - a(61) - a(68) - a(69) - a(70) a(49) = s1 - a(50) - a(51) - a(58) - a(59) - a(60) - a(67) - a(68) - a(69) a(48) = s1 - a(49) - a(50) - a(57) - a(58) - a(59) - a(66) - a(67) - a(68) a(47) = s1 - a(48) - a(49) - a(56) - a(57) - a(58) - a(65) - a(66) - a(67) a(46) = s1 - a(47) - a(48) - a(55) - a(56) - a(57) - a(64) - a(65) - a(66) a(43) = s1 - a(44) - a(45) - a(52) - a(53) - a(54) - a(61) - a(62) - a(63) a(42) = s1 - a(43) - a(44) - a(51) - a(52) - a(53) - a(60) - a(61) - a(62) a(41) = s1 - a(42) - a(43) - a(50) - a(51) - a(52) - a(59) - a(60) - a(61) a(40) = s1 - a(41) - a(42) - a(49) - a(50) - a(51) - a(58) - a(59) - a(60) a(39) = s1 - a(40) - a(41) - a(48) - a(49) - a(50) - a(57) - a(58) - a(59) a(38) = s1 - a(39) - a(40) - a(47) - a(48) - a(49) - a(56) - a(57) - a(58) a(37) = s1 - a(38) - a(39) - a(46) - a(47) - a(48) - a(55) - a(56) - a(57) a(34) = s1 - a(35) - a(36) - a(43) - a(44) - a(45) - a(52) - a(53) - a(54) a(33) = s1 - a(34) - a(35) - a(42) - a(43) - a(44) - a(51) - a(52) - a(53) a(32) = s1 - a(33) - a(34) - a(41) - a(42) - a(43) - a(50) - a(51) - a(52) a(31) = s1 - a(32) - a(33) - a(40) - a(41) - a(42) - a(49) - a(50) - a(51) a(30) = s1 - a(31) - a(32) - a(39) - a(40) - a(41) - a(48) - a(49) - a(50) a(29) = s1 - a(30) - a(31) - a(38) - a(39) - a(40) - a(47) - a(48) - a(49) a(28) = s1 - a(29) - a(30) - a(37) - a(38) - a(39) - a(46) - a(47) - a(48) a(27) = s1 / 3 - a(54) - a(75) - a(78) + a(81) a(26) = s1 / 3 - a(53) - a(74) - a(77) + a(80) a(25) = s1 - a(26) - a(27) - a(34) - a(35) - a(36) - a(43) - a(44) - a(45) a(24) = s1 - a(25) - a(26) - a(33) - a(34) - a(35) - a(42) - a(43) - a(44) a(23) = s1 - a(24) - a(25) - a(32) - a(33) - a(34) - a(41) - a(42) - a(43) a(22) = s1 - a(23) - a(24) - a(31) - a(32) - a(33) - a(40) - a(41) - a(42) a(21) = s1 - a(22) - a(23) - a(30) - a(31) - a(32) - a(39) - a(40) - a(41) a(20) = s1 - a(21) - a(22) - a(29) - a(30) - a(31) - a(38) - a(39) - a(40) a(19) = s1 - a(20) - a(21) - a(28) - a(29) - a(30) - a(37) - a(38) - a(39) a(18) = s1 / 3 - a(45) - a(66) - a(69) + a(72) a(17) = s1 / 3 - a(44) - a(65) - a(68) + a(71) a(16) = s1 - a(17) - a(18) - a(25) - a(26) - a(27) - a(34) - a(35) - a(36) a(15) = s1 - a(16) - a(17) - a(24) - a(25) - a(26) - a(33) - a(34) - a(35) a(14) = s1 - a(15) - a(16) - a(23) - a(24) - a(25) - a(32) - a(33) - a(34) a(13) = s1 - a(14) - a(15) - a(22) - a(23) - a(24) - a(31) - a(32) - a(33) a(12) = s1 - a(13) - a(14) - a(21) - a(22) - a(23) - a(30) - a(31) - a(32) a(11) = s1 - a(12) - a(13) - a(20) - a(21) - a(22) - a(29) - a(30) - a(31) a(10) = s1 - a(11) - a(12) - a(19) - a(20) - a(21) - a(28) - a(29) - a(30) a( 9) = s1 - a(17) - a(25) - a(33) - a(41) - a(49) - a(57) - a(65) - a(73) a( 8) = s1 - a(16) - a(24) - a(32) - a(40) - a(48) - a(56) - a(64) - a(81) a( 7) = s1 - a( 8) - a( 9) - a(16) - a(17) - a(18) - a(25) - a(26) - a(27) a( 6) = s1 - a( 7) - a( 8) - a(15) - a(16) - a(17) - a(24) - a(25) - a(26) a( 5) = s1 - a( 6) - a( 7) - a(14) - a(15) - a(16) - a(23) - a(24) - a(25) a( 4) = s1 - a( 5) - a( 6) - a(13) - a(14) - a(15) - a(22) - a(23) - a(24) a( 3) = s1 - a( 4) - a( 5) - a(12) - a(13) - a(14) - a(21) - a(22) - a(23) a( 2) = s1 - a( 3) - a( 4) - a(11) - a(12) - a(13) - a(20) - a(21) - a(22) a( 1) = s1 - a( 2) - a( 3) - a(10) - a(11) - a(12) - a(19) - a(20) - a(21)
Subject equations will be used for the generation of Sudoku Comparable Squares as discussed in Section 9.5.3.
9.4.4 Further Analysis, Partly Compact Magic Squares
Partly Compact means that, while starting with a 9th order square divided into nine 3th order sub squares, only the elements of the sub squares obtained by moving a window either horizontally or vertically will sum to the Magic Sum.
Although Partly Compact Magic Squares will not be considered in this section, the definition is useful to understand some of the pre selection criteria used in Section 9.5.
9.4.5 Further Analysis, Associated Magic Squares
Every third-row and third-column summing to s1/3
The defining equations for Associated Magic Squares for which every third-row and third-column sum to one third of the magic constant s1 are: a(79) = s1/3 - a(80) - a(81) a(76) = s1/3 - a(77) - a(78) a(73) = s1/3 - a(74) - a(75) a(70) = s1/3 - a(71) - a(72) a(67) = s1/3 - a(68) - a(69) a(64) = s1/3 - a(65) - a(66) a(63) = s1/3 - a(72) - a(81) a(62) = s1/3 - a(71) - a(80) a(61) = - s1/3 + a(71) + a(72) + a(80) + a(81) a(60) = s1/3 - a(69) - a(78) a(59) = s1/3 - a(68) - a(77) a(58) = - s1/3 + a(68) + a(69) + a(77) + a(78) a(57) = s1/3 - a(66) - a(75) a(56) = s1/3 - a(65) - a(74) a(55) = - s1/3 + a(65) + a(66) + a(74) + a(75) a(52) = s1/3 - a(53) - a(54) a(49) = s1/3 - a(50) - a(51) a(46) = s1/3 - a(47) - a(48) a(45) = 4*s1/9 - a(47) - a(48) - a(54) a(44) = s1/9 + a(47) - a(53) a(43) = -2*s1/9 + a(48) + a(53) + a(54) a(42) = 4*s1/9 - a(50) - 2 * a(51) a(41) = s1/9
which can be applied in an Excel spreadsheet (Ref. CnstrSngl9b3)
and an appropriate guessing routine as discussed in Section 9.5.2.
9.4.6 Further Analysis, Associated Magic Squares
Regular Sub Squares summing to s1
The defining equations for Associated Magic Squares for which the elements of the regular sub squares (9) sum to the magic constant s1 are: a(73) = s1 - a(74) - a(75) - a(76) - a(77) - a(78) - a(79) - a(80) - a(81) a(64) = s1 - a(65) - a(66) - a(67) - a(68) - a(69) - a(70) - a(71) - a(72) a(61) = s1 - a(62) - a(63) - a(70) - a(71) - a(72) - a(79) - a(80) - a(81) a(58) = s1 - a(59) - a(60) - a(67) - a(68) - a(69) - a(76) - a(77) - a(78) a(55) = s1 - a(56) - a(57) - a(64) - a(65) - a(66) - a(73) - a(74) - a(75) a(46) = s1 - a(47) - a(48) - a(49) - a(50) - a(51) - a(52) - a(53) - a(54) a(45) = s1/9 + a(46) - a(54) + a(55) - a(63) + a(64) - a(72) + a(73) - a(81) a(44) = s1/9 + a(47) - a(53) + a(56) - a(62) + a(65) - a(71) + a(74) - a(80) a(43) = - 8*s1/9 + a(48) - a(52) + a(57) + a(62) + a(63) + a(66) + a(71) + a(72) + a(75) + a(80) + a(81) a(42) = 10*s1/9 + a(49) - a(51) - a(59) - 2 * a(60) - a(68) - 2 * a(69) - a(77) - 2 * a(78) a(41) = s1/9
which can be applied in an Excel spreadsheet (Ref. CnstrSngl9b4)
and an appropriate guessing routine as discussed in Section 9.5.2.
|
Index | About the Author |