Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
a(73) = s1 - a(74) - a(75) - a(76) - a(77) - a(78) - a(79) - a(80) - a(81) a(64) = s1 - a(65) - a(66) - a(67) - a(68) - a(69) - a(70) - a(71) - a(72) a(55) = s1 - a(56) - a(57) - a(58) - a(59) - a(60) - a(61) - a(62) - a(63) a(46) = s1 - a(47) - a(48) - a(49) - a(50) - a(51) - a(52) - a(53) - a(54) a(37) = s1 - a(38) - a(39) - a(40) - a(41) - a(42) - a(43) - a(44) - a(45) a(28) = s1 - a(29) - a(30) - a(31) - a(32) - a(33) - a(34) - a(35) - a(36) a(27) = 7 * s1 / 3 - a(28) - a(35) - a(36) - a(37) - a(38) - a(43) - a(44) - 2 *a(45) - a(46) + a(49) + a(50) - a(53) + - a(54) - a(55) - a(56) - a(61) - a(62) - 2 * a(63) - a(64) - a(71) - a(72) - a(81) a(26) = a(27) + a(28) - a(34) + a(38) - a(42) - a(44) + a(45) + a(46) + a(48) - a(50) - a(52) + a(56) - a(60) - a(62) + + a(63) + a(64) - a(70) - a(80) + a(81) a(25) = a(26) - a(33) + a(36) + a(37) - a(41) - a(43) + a(44) + a(47) - a(49) - a(51) + a(54) + a(55) - a(59) - a(61) + + a(62) - a(69) + a(72) - a(79) + a(80) a(24) = a(25) - a(32) + a(35) - a(40) - a(42) + a(43) + a(45) + a(46) - a(48) - a(50) + a(53) - a(58) - a(60) + a(61) + + a(63) - a(68) + a(71) - a(78) + a(79) a(23) = a(24) - a(31) + a(34) - a(39) - a(41) + a(42) + a(44) - a(47) - a(49) + a(52) + a(54) - a(57) - a(59) + a(60) + + a(62) - a(67) + a(70) - a(77) + a(78) a(22) = a(23) - a(30) + a(33) - a(38) - a(40) + a(41) + a(43) - a(46) - a(48) + a(51) + a(53) - a(56) - a(58) + a(59) + + a(61) - a(66) + a(69) - a(76) + a(77) a(21) = a(22) - a(29) + a(32) - a(37) - a(39) + a(40) + a(42) - a(47) + a(50) + a(52) - a(54) - a(55) - a(57) + a(58) + + a(60) - a(65) + a(68) - a(75) + a(76) a(20) = a(21) - a(28) + a(31) - a(38) + a(39) + a(41) - a(45) - a(46) + a(49) + a(51) - a(53) - a(56) + a(57) + a(59) + - a(63) - a(64) + a(67) - a(74) + a(75) a(19) = s1 - a(20) - a(21) - a(22) - a(23) - a(24) - a(25) - a(26) - a(27) a(18) = 2 *s1 + a(19) + 2*a(28) + a(29) + a(35) + 2*a(36) + a(37) - a(38) - 2*a(39) - 3*a(40) - 3*a(41) - 3*a(42) - 2*a(43) + + a(46) - 2*a(48) - 3*a(49) - 4*a(50) - 3*a(51) - a(52) + a(54) + a(55) - a(56) - 2*a(57) - 4*a(58) - 4*a(59) + - 3*a(60) - 2*a(61) + 3*a(64) + 2*a(65) + a(70) + 2*a(71) + 3*a(72) + 2 * a(73) + a(80) + a(81) a(17) = a(18) + a(19) - a(26) + a(29) - a(35) + a(39) - a(44) + a(49) - a(53) + a(59) - a(62) + a(69) - a(71) + a(79) - a(80) a(16) = a(17) - a(25) + a(27) + a(28) - a(34) + a(38) - a(43) + a(48) - a(52) + a(58) - a(61) + a(68) - a(70) + a(78) - a(79) a(15) = a(16) - a(24) + a(26) - a(33) + a(36) + a(37) - a(42) + a(47) - a(51) + a(57) - a(60) + a(67) - a(69) + a(77) - a(78) a(14) = a(15) - a(23) + a(25) - a(32) + a(35) - a(41) + a(45) + a(46) - a(50) + a(56) - a(59) + a(66) - a(68) + a(76) - a(77) a(13) = a(14) - a(22) + a(24) - a(31) + a(34) - a(40) + a(44) - a(49) + a(54) + a(55) - a(58) + a(65) - a(67) + a(75) - a(76) a(12) = a(13) - a(21) + a(23) - a(30) + a(33) - a(39) + a(43) - a(48) + a(53) - a(57) + a(63) + a(64) - a(66) + a(74) - a(75) a(11) = a(12) - a(20) + a(22) - a(29) + a(32) - a(38) + a(42) - a(47) + a(52) - a(56) + a(62) - a(65) + a(72) + a(73) - a(74) a(10) = s1 - a(11) - a(12) - a(13) - a(14) - a(15) - a(16) - a(17) - a(18) a( 9) = s1 - a(18) - a(27) - a(36) - a(45) - a(54) - a(63) - a(72) - a(81) a( 8) = s1 - a(17) - a(26) - a(35) - a(44) - a(53) - a(62) - a(71) - a(80) a( 7) = s1 - a(16) - a(25) - a(34) - a(43) - a(52) - a(61) - a(70) - a(79) a( 6) = s1 - a(15) - a(24) - a(33) - a(42) - a(51) - a(60) - a(69) - a(78) a( 5) = s1 - a(14) - a(23) - a(32) - a(41) - a(50) - a(59) - a(68) - a(77) a( 4) = s1 - a(13) - a(22) - a(31) - a(40) - a(49) - a(58) - a(67) - a(76) a( 3) = s1 - a(12) - a(21) - a(30) - a(39) - a(48) - a(57) - a(66) - a(75) a( 2) = s1 - a(11) - a(20) - a(29) - a(38) - a(47) - a(56) - a(65) - a(74) a (1) = s1 - a( 2) - a( 3) - a( 4) - a( 5) - a( 6) - a( 7) - a( 8) - a( 9)
The linear equations shown above, are ready to be solved, for the magic constant 369.
0 < a(i) =< 81 for i = 1, 2, ... 28, 37, 46, 55, 64 and 73
which can be incorporated in a guessing routine, which might be used to generate - if not all - at least collections of 9th order squares with distinct integers within a reasonable time.
9.2 Further Analysis, Matrix Operation
Rather than trying to find solutions based on the equations deducted in section 9.1 above, the construction method described in section 13.2 will be used as a starting point for the generation of 9th order Pan Magic Squares.
As illustrated in section 13.2 an individual Pan Magic Square of order 9 can be constructed by means of following method:
Which can be realized by means of an Excel spreadsheet as shown below: |
The 2592 possible solutions, generated with routine MgcSqr9b within 171 seconds, are shown in Attachment 9.3.1 and further referred to as Collection {B}.
Other interesting sub collections of order 9 (Pan) Magic Squares will be discussed in following section(s).
9.4 Further Analysis, Compact and Symmetric Squares
A Magic Square, being a multiple of 2, 3, 5, ... , is compact when subject 2 x 2, 3 x 3, 5 x 5, ... sub squares sum to a proportional part of the magic sum.
A Magic Square can be double compact (e.g. 15 x 15 for 3 x 3 and 5 x 5 sub squares).
We can define following sub collections of Compact Pan Magic Squares:
For the last category the 3 x 3 sub squares sum to 369 (Compact), the symmetrical pairs sum to 82 (Symmetric) and the
Examples of Compact Associated Pan Magic Squares are shown in Attachment 9.4.1.
Examples of Compact Pan Magic Squares with every third-row and third-column summing to one third of the magic constant are shown in Attachment 9.4.2.
Examples of Compact Associated Pan Magic Squares with every third-row and third-column summing to one third of the magic constant,
are shown in Attachment 9.4.3.
9.4.1 Further Analysis, Compact, Symmetric Diagonals
The equations describing a Pan Magic Square of the 9th order (Section 9.1) can be combined with the following linear equations resulting from the described properties.
Compact:
Σ a(i + j) = 369 with 1 =< i =< 61 and i ≠ 9 * n and i ≠ (9 * n - 1) for n = 1 ... 7
Symmetric Diagonals:
Every third-row and third-column sum to 123:
Σ a(i + j) = 123 with i = (1 + 9 * n), (4 + 9 * n), (7 + 9 * n) for n = 0 ... 8
Or in matrix representation:
Which can be reduced, by means of row and column manipulations, to:
a(79) = 123 - a(80) - a(81)
which can be applied in an Excel spreadsheet (Ref. CnstrSngl9b)
and an appropriate guessing routine.
|
Index | About the Author |