25.0 Magic Squares, Higher Order, Overlapping Sub Squares
25.7 Magic Squares, Associated (17 x 17)
Magic Squares of order 17, with two 9th order Overlapping Sub Squares with identical Magic Sums can be constructed based on suitable selected Latin Sub Squares.
Simple Magic Squares M of order 9 with the numbers 1 ... 81 can be written as
M =
A +
9 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2 ... 8 as illustrated below for a Simple Magic Square with the center element in the bottom/right corner.
A
6 |
1 |
5 |
4 |
8 |
0 |
2 |
3 |
7 |
4 |
8 |
0 |
2 |
3 |
7 |
6 |
1 |
5 |
2 |
3 |
7 |
6 |
1 |
5 |
4 |
8 |
0 |
5 |
6 |
1 |
0 |
4 |
8 |
7 |
2 |
3 |
0 |
4 |
8 |
7 |
2 |
3 |
5 |
6 |
1 |
7 |
2 |
3 |
5 |
6 |
1 |
0 |
4 |
8 |
1 |
5 |
6 |
8 |
0 |
4 |
3 |
7 |
2 |
8 |
0 |
4 |
3 |
7 |
2 |
1 |
5 |
6 |
3 |
7 |
2 |
1 |
5 |
6 |
8 |
0 |
4 |
|
B = T(A)
6 |
4 |
2 |
5 |
0 |
7 |
1 |
8 |
3 |
1 |
8 |
3 |
6 |
4 |
2 |
5 |
0 |
7 |
5 |
0 |
7 |
1 |
8 |
3 |
6 |
4 |
2 |
4 |
2 |
6 |
0 |
7 |
5 |
8 |
3 |
1 |
8 |
3 |
1 |
4 |
2 |
6 |
0 |
7 |
5 |
0 |
7 |
5 |
8 |
3 |
1 |
4 |
2 |
6 |
2 |
6 |
4 |
7 |
5 |
0 |
3 |
1 |
8 |
3 |
1 |
8 |
2 |
6 |
4 |
7 |
5 |
0 |
7 |
5 |
0 |
3 |
1 |
8 |
2 |
6 |
4 |
|
M
61 |
38 |
24 |
50 |
9 |
64 |
12 |
76 |
35 |
14 |
81 |
28 |
57 |
40 |
26 |
52 |
2 |
69 |
48 |
4 |
71 |
16 |
74 |
33 |
59 |
45 |
19 |
42 |
25 |
56 |
1 |
68 |
54 |
80 |
30 |
13 |
73 |
32 |
18 |
44 |
21 |
58 |
6 |
70 |
47 |
8 |
66 |
49 |
78 |
34 |
11 |
37 |
23 |
63 |
20 |
60 |
43 |
72 |
46 |
5 |
31 |
17 |
75 |
36 |
10 |
77 |
22 |
62 |
39 |
65 |
51 |
7 |
67 |
53 |
3 |
29 |
15 |
79 |
27 |
55 |
41 |
|
For Simple Magic Squares of order 9
the series {0, 1, 2, ... 8} can be replaced by any series
{ai, i = 1 ... 9} and {bj, j = 1 ... 9}.
(Pan) Magic Squares M of order 8 with the numbers 1 ... 64 can be written as
M =
A +
8 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2, 3, 4, 5, 6 and 7 as illustrated below for a Composed Magic Square:
A
6 |
4 |
3 |
1 |
6 |
4 |
3 |
1 |
1 |
3 |
4 |
6 |
1 |
3 |
4 |
6 |
4 |
6 |
1 |
3 |
4 |
6 |
1 |
3 |
3 |
1 |
6 |
4 |
3 |
1 |
6 |
4 |
2 |
0 |
7 |
5 |
2 |
0 |
7 |
5 |
5 |
7 |
0 |
2 |
5 |
7 |
0 |
2 |
0 |
2 |
5 |
7 |
0 |
2 |
5 |
7 |
7 |
5 |
2 |
0 |
7 |
5 |
2 |
0 |
|
B = T(A)
6 |
1 |
4 |
3 |
2 |
5 |
0 |
7 |
4 |
3 |
6 |
1 |
0 |
7 |
2 |
5 |
3 |
4 |
1 |
6 |
7 |
0 |
5 |
2 |
1 |
6 |
3 |
4 |
5 |
2 |
7 |
0 |
6 |
1 |
4 |
3 |
2 |
5 |
0 |
7 |
4 |
3 |
6 |
1 |
0 |
7 |
2 |
5 |
3 |
4 |
1 |
6 |
7 |
0 |
5 |
2 |
1 |
6 |
3 |
4 |
5 |
2 |
7 |
0 |
|
M
55 |
13 |
36 |
26 |
23 |
45 |
4 |
58 |
34 |
28 |
53 |
15 |
2 |
60 |
21 |
47 |
29 |
39 |
10 |
52 |
61 |
7 |
42 |
20 |
12 |
50 |
31 |
37 |
44 |
18 |
63 |
5 |
51 |
9 |
40 |
30 |
19 |
41 |
8 |
62 |
38 |
32 |
49 |
11 |
6 |
64 |
17 |
43 |
25 |
35 |
14 |
56 |
57 |
3 |
46 |
24 |
16 |
54 |
27 |
33 |
48 |
22 |
59 |
1 |
|
For Composed Magic Squares the series {0, 1, 2, 3, 4, 5, 6, 7} has to be split into two sub series with identical sum (14),
in the example shown above {0, 2, 5, 7} and {1, 3, 4, 6}.
The series {0, 1, 2, 3, 4, 5, 6, 7}
can be replaced by any series {ai, i = 1 ... 8} and {bj, j = 1 ... 8} which can be split into two sub series with identical sum.
Magic Square M of order 17 with the numbers 1 ... 289 can be written as
M =
A +
17 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2, 3, 4 ... 16.
The balanced series {0, 1, 2, 3, 4 ... 16} can be split into two sub series - with identical sum (64) - around the center element e.g.:
{0, 1, 5, 9, 10, 12, 13, 14}, {8}, {2, 3, 4, 6, 7, 11, 15, 16}
which can be used for the construction of the two order 8 Sub Squares and - if combined with the common center element 8 -
the two each other overlapping order 9 Sub Squares, as illustrated below:
A
10 |
0 |
9 |
8 |
13 |
14 |
1 |
5 |
12 |
4 |
2 |
15 |
11 |
4 |
2 |
15 |
11 |
8 |
13 |
14 |
1 |
5 |
12 |
10 |
0 |
9 |
11 |
15 |
2 |
4 |
11 |
15 |
2 |
4 |
1 |
5 |
12 |
10 |
0 |
9 |
8 |
13 |
14 |
2 |
4 |
11 |
15 |
2 |
4 |
11 |
15 |
9 |
10 |
0 |
14 |
8 |
13 |
12 |
1 |
5 |
15 |
11 |
4 |
2 |
15 |
11 |
4 |
2 |
14 |
8 |
13 |
12 |
1 |
5 |
9 |
10 |
0 |
6 |
3 |
16 |
7 |
6 |
3 |
16 |
7 |
12 |
1 |
5 |
9 |
10 |
0 |
14 |
8 |
13 |
7 |
16 |
3 |
6 |
7 |
16 |
3 |
6 |
0 |
9 |
10 |
13 |
14 |
8 |
5 |
12 |
1 |
3 |
6 |
7 |
16 |
3 |
6 |
7 |
16 |
13 |
14 |
8 |
5 |
12 |
1 |
0 |
9 |
10 |
16 |
7 |
6 |
3 |
16 |
7 |
6 |
3 |
5 |
12 |
1 |
0 |
9 |
10 |
13 |
14 |
8 |
2 |
3 |
6 |
7 |
16 |
15 |
4 |
11 |
13 |
10 |
9 |
0 |
13 |
10 |
9 |
0 |
6 |
7 |
16 |
15 |
4 |
11 |
8 |
2 |
3 |
0 |
9 |
10 |
13 |
0 |
9 |
10 |
13 |
15 |
4 |
11 |
8 |
2 |
3 |
6 |
7 |
16 |
10 |
13 |
0 |
9 |
10 |
13 |
0 |
9 |
3 |
8 |
2 |
16 |
6 |
7 |
11 |
15 |
4 |
9 |
0 |
13 |
10 |
9 |
0 |
13 |
10 |
16 |
6 |
7 |
11 |
15 |
4 |
3 |
8 |
2 |
14 |
12 |
5 |
1 |
14 |
12 |
5 |
1 |
11 |
15 |
4 |
3 |
8 |
2 |
16 |
6 |
7 |
1 |
5 |
12 |
14 |
1 |
5 |
12 |
14 |
2 |
3 |
8 |
7 |
16 |
6 |
4 |
11 |
15 |
12 |
14 |
1 |
5 |
12 |
14 |
1 |
5 |
7 |
16 |
6 |
4 |
11 |
15 |
2 |
3 |
8 |
5 |
1 |
14 |
12 |
5 |
1 |
14 |
12 |
4 |
11 |
15 |
2 |
3 |
8 |
7 |
16 |
6 |
B = T(A)
10 |
8 |
1 |
9 |
14 |
12 |
0 |
13 |
5 |
13 |
0 |
10 |
9 |
14 |
1 |
12 |
5 |
0 |
13 |
5 |
10 |
8 |
1 |
9 |
14 |
12 |
10 |
9 |
13 |
0 |
12 |
5 |
14 |
1 |
9 |
14 |
12 |
0 |
13 |
5 |
10 |
8 |
1 |
9 |
10 |
0 |
13 |
5 |
12 |
1 |
14 |
8 |
1 |
10 |
14 |
12 |
9 |
13 |
5 |
0 |
0 |
13 |
9 |
10 |
1 |
14 |
5 |
12 |
13 |
5 |
0 |
8 |
1 |
10 |
14 |
12 |
9 |
13 |
0 |
10 |
9 |
14 |
1 |
12 |
5 |
14 |
12 |
9 |
13 |
5 |
0 |
8 |
1 |
10 |
10 |
9 |
13 |
0 |
12 |
5 |
14 |
1 |
1 |
10 |
8 |
12 |
9 |
14 |
5 |
0 |
13 |
9 |
10 |
0 |
13 |
5 |
12 |
1 |
14 |
5 |
0 |
13 |
1 |
10 |
8 |
12 |
9 |
14 |
0 |
13 |
9 |
10 |
1 |
14 |
5 |
12 |
12 |
9 |
14 |
5 |
0 |
13 |
1 |
10 |
8 |
6 |
15 |
3 |
16 |
11 |
2 |
7 |
4 |
4 |
11 |
2 |
15 |
6 |
7 |
3 |
16 |
2 |
7 |
4 |
8 |
6 |
15 |
3 |
16 |
11 |
2 |
15 |
4 |
11 |
3 |
16 |
6 |
7 |
3 |
16 |
11 |
2 |
7 |
4 |
8 |
6 |
15 |
15 |
2 |
11 |
4 |
16 |
3 |
7 |
6 |
6 |
15 |
8 |
16 |
11 |
3 |
7 |
4 |
2 |
11 |
4 |
15 |
2 |
7 |
6 |
16 |
3 |
7 |
4 |
2 |
6 |
15 |
8 |
16 |
11 |
3 |
4 |
11 |
2 |
15 |
6 |
7 |
3 |
16 |
16 |
11 |
3 |
7 |
4 |
2 |
6 |
15 |
8 |
2 |
15 |
4 |
11 |
3 |
16 |
6 |
7 |
15 |
8 |
6 |
11 |
3 |
16 |
4 |
2 |
7 |
15 |
2 |
11 |
4 |
16 |
3 |
7 |
6 |
4 |
2 |
7 |
15 |
8 |
6 |
11 |
3 |
16 |
11 |
4 |
15 |
2 |
7 |
6 |
16 |
3 |
11 |
3 |
16 |
4 |
2 |
7 |
15 |
8 |
6 |
M = A + 17 * B + [1]
181 |
137 |
27 |
162 |
252 |
219 |
2 |
227 |
98 |
226 |
3 |
186 |
165 |
243 |
20 |
220 |
97 |
9 |
235 |
100 |
172 |
142 |
30 |
164 |
239 |
214 |
182 |
169 |
224 |
5 |
216 |
101 |
241 |
22 |
155 |
244 |
217 |
11 |
222 |
95 |
179 |
150 |
32 |
156 |
175 |
12 |
237 |
88 |
209 |
29 |
254 |
146 |
28 |
171 |
253 |
213 |
167 |
234 |
87 |
6 |
16 |
233 |
158 |
173 |
33 |
250 |
90 |
207 |
236 |
94 |
14 |
149 |
19 |
176 |
248 |
215 |
154 |
228 |
4 |
187 |
161 |
245 |
21 |
221 |
93 |
251 |
206 |
159 |
231 |
96 |
1 |
151 |
26 |
184 |
178 |
170 |
225 |
7 |
212 |
102 |
242 |
24 |
18 |
180 |
147 |
218 |
168 |
247 |
91 |
13 |
223 |
157 |
177 |
8 |
238 |
89 |
211 |
25 |
255 |
99 |
15 |
230 |
23 |
183 |
138 |
205 |
163 |
249 |
17 |
229 |
160 |
174 |
34 |
246 |
92 |
208 |
210 |
166 |
240 |
86 |
10 |
232 |
31 |
185 |
145 |
105 |
259 |
58 |
280 |
204 |
50 |
124 |
80 |
82 |
198 |
44 |
256 |
116 |
130 |
61 |
273 |
41 |
127 |
85 |
152 |
107 |
267 |
60 |
275 |
191 |
35 |
265 |
79 |
201 |
52 |
282 |
113 |
133 |
67 |
277 |
199 |
43 |
122 |
72 |
143 |
110 |
272 |
266 |
48 |
188 |
78 |
283 |
65 |
120 |
112 |
106 |
264 |
139 |
289 |
194 |
59 |
131 |
84 |
39 |
197 |
69 |
269 |
45 |
129 |
103 |
286 |
62 |
136 |
75 |
42 |
114 |
271 |
141 |
276 |
196 |
54 |
83 |
200 |
40 |
257 |
117 |
132 |
57 |
274 |
284 |
203 |
56 |
123 |
77 |
37 |
119 |
262 |
144 |
36 |
261 |
81 |
202 |
53 |
278 |
115 |
134 |
258 |
140 |
111 |
195 |
68 |
279 |
73 |
46 |
135 |
268 |
49 |
189 |
74 |
285 |
66 |
121 |
108 |
76 |
51 |
126 |
260 |
148 |
118 |
190 |
55 |
281 |
193 |
70 |
270 |
47 |
125 |
104 |
287 |
64 |
192 |
63 |
288 |
71 |
38 |
128 |
263 |
153 |
109 |
The possible (unique) order 17 Balanced Series for the integers 0 ... 16, as described above, are shown in
Attachment 25.7.2.
Attachment 25.7.3 shows a few 17th order Associated Magic Squares with 9th order Overlapping Sub Squares and
Order 8 Composed Magic Corner Squares.
Attachment 25.7.4 shows a few 17th order Associated Magic Squares with 9th order Overlapping Sub Squares.
Order 8 Composed Magic Corner Squares (Magic Middle and Center Squares).
Each square shown corresponds with numerous solutions, which can be obtained by variation of the Latin Sub Squares.
25.8 Magic Squares (17 x 17)
Most Perfect Magic Sub Squares (8 x 8)
Alternatively the series {0, 1, 2, 3, 4 ... 16} can be split into two balanced sub series - with identical sum (64) - around the center element e.g.:
{0, 1, 2, 3, 13, 14, 15, 16}, {8}, {4, 5, 6, 7, 9, 10, 11, 12}
which can be used for the construction of the two order 8 Sub Squares and - if combined with the common center element 8 -
the two each other overlapping order 9 Sub Squares.
The application of balanced sub series enables the construction of order 8 Pan Magic, Compact and Complete Sub Squares (Most Perfect).
Pan Magic Squares M of order 8 with the numbers 1 ... 64 can be written as
M =
A +
8 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2, 3, 4, 5, 6 and 7 as illustrated below for a Most Perfect Pan Magic Square
A
0 |
1 |
2 |
3 |
7 |
6 |
5 |
4 |
7 |
6 |
5 |
4 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
7 |
6 |
5 |
4 |
7 |
6 |
5 |
4 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
7 |
6 |
5 |
4 |
7 |
6 |
5 |
4 |
0 |
1 |
2 |
3 |
0 |
1 |
2 |
3 |
7 |
6 |
5 |
4 |
7 |
6 |
5 |
4 |
0 |
1 |
2 |
3 |
|
B = R(A)
4 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
5 |
2 |
5 |
2 |
5 |
2 |
5 |
2 |
6 |
1 |
6 |
1 |
6 |
1 |
6 |
1 |
7 |
0 |
7 |
0 |
7 |
0 |
7 |
0 |
3 |
4 |
3 |
4 |
3 |
4 |
3 |
4 |
2 |
5 |
2 |
5 |
2 |
5 |
2 |
5 |
1 |
6 |
1 |
6 |
1 |
6 |
1 |
6 |
0 |
7 |
0 |
7 |
0 |
7 |
0 |
7 |
|
M
33 |
26 |
35 |
28 |
40 |
31 |
38 |
29 |
48 |
23 |
46 |
21 |
41 |
18 |
43 |
20 |
49 |
10 |
51 |
12 |
56 |
15 |
54 |
13 |
64 |
7 |
62 |
5 |
57 |
2 |
59 |
4 |
25 |
34 |
27 |
36 |
32 |
39 |
30 |
37 |
24 |
47 |
22 |
45 |
17 |
42 |
19 |
44 |
9 |
50 |
11 |
52 |
16 |
55 |
14 |
53 |
8 |
63 |
6 |
61 |
1 |
58 |
3 |
60 |
|
The balanced series {0, 1, 2, 3, 4, 5, 6, 7}
can be replaced by any balanced series {ai, i = 1 ... 8} and {bj, j = 1 ... 8}.
The possible (unique) order 8 and 9 Balanced Series for the integers 0 ... 16, as described above, are shown in
Attachment 25.7.1.
Attachment 25.7.5 shows a few 17th order Magic Squares with 9th order Overlapping Sub Squares and
Order 8 Most Perfect Pan Magic Corner Squares (Pan Magic, Compact and Complete).
Each square shown corresponds with numerous solutions, which can be obtained by variation of the Latin Sub Squares.
25.9 Magic Squares, Associated (19 x 19)
Although Euler postulated that sets of suitable Latin Squares did not exist for oddly even orders n ≡ 2 (mod 4), R. C. Bose and S. Shrinkhade proved the contrary for all n >= 10 (1959/1960).
Consequently also Magic Squares of order 19, with two 10th order Overlapping Sub Squares with identical Magic Sums, can be constructed based on suitable selected Latin Sub Squares.
Simple Magic Squares M of order 9 with the numbers 1 ... 81 can be written as
M =
A +
9 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2 ... 8 as illustrated below.
A
0 |
4 |
8 |
7 |
2 |
3 |
5 |
6 |
1 |
7 |
2 |
3 |
5 |
6 |
1 |
0 |
4 |
8 |
5 |
6 |
1 |
0 |
4 |
8 |
7 |
2 |
3 |
8 |
0 |
4 |
3 |
7 |
2 |
1 |
5 |
6 |
3 |
7 |
2 |
1 |
5 |
6 |
8 |
0 |
4 |
1 |
5 |
6 |
8 |
0 |
4 |
3 |
7 |
2 |
4 |
8 |
0 |
2 |
3 |
7 |
6 |
1 |
5 |
2 |
3 |
7 |
6 |
1 |
5 |
4 |
8 |
0 |
6 |
1 |
5 |
4 |
8 |
0 |
2 |
3 |
7 |
|
B = T(A)
0 |
7 |
5 |
8 |
3 |
1 |
4 |
2 |
6 |
4 |
2 |
6 |
0 |
7 |
5 |
8 |
3 |
1 |
8 |
3 |
1 |
4 |
2 |
6 |
0 |
7 |
5 |
7 |
5 |
0 |
3 |
1 |
8 |
2 |
6 |
4 |
2 |
6 |
4 |
7 |
5 |
0 |
3 |
1 |
8 |
3 |
1 |
8 |
2 |
6 |
4 |
7 |
5 |
0 |
5 |
0 |
7 |
1 |
8 |
3 |
6 |
4 |
2 |
6 |
4 |
2 |
5 |
0 |
7 |
1 |
8 |
3 |
1 |
8 |
3 |
6 |
4 |
2 |
5 |
0 |
7 |
|
M
1 |
68 |
54 |
80 |
30 |
13 |
42 |
25 |
56 |
44 |
21 |
58 |
6 |
70 |
47 |
73 |
32 |
18 |
78 |
34 |
11 |
37 |
23 |
63 |
8 |
66 |
49 |
72 |
46 |
5 |
31 |
17 |
75 |
20 |
60 |
43 |
22 |
62 |
39 |
65 |
51 |
7 |
36 |
10 |
77 |
29 |
15 |
79 |
27 |
55 |
41 |
67 |
53 |
3 |
50 |
9 |
64 |
12 |
76 |
35 |
61 |
38 |
24 |
57 |
40 |
26 |
52 |
2 |
69 |
14 |
81 |
28 |
16 |
74 |
33 |
59 |
45 |
19 |
48 |
4 |
71 |
|
For Simple Magic Squares of order 9
the series {0, 1, 2, ... 8} can be replaced by any series
{ai, i = 1 ... 9} and {bj, j = 1 ... 9}.
Simple Magic Squares M of order 10 with the numbers 1 ... 100 can be written as
M =
A +
10 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2 ... 9 as illustrated below.
A
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
2 |
4 |
9 |
7 |
0 |
3 |
5 |
1 |
6 |
8 |
9 |
7 |
1 |
5 |
6 |
4 |
8 |
3 |
0 |
2 |
1 |
0 |
8 |
6 |
9 |
2 |
7 |
4 |
5 |
3 |
8 |
6 |
5 |
0 |
7 |
1 |
3 |
2 |
9 |
4 |
6 |
3 |
4 |
9 |
2 |
8 |
0 |
5 |
1 |
7 |
5 |
9 |
7 |
8 |
3 |
0 |
2 |
6 |
4 |
1 |
3 |
8 |
0 |
4 |
5 |
7 |
1 |
9 |
2 |
6 |
7 |
5 |
6 |
2 |
1 |
9 |
4 |
8 |
3 |
0 |
4 |
2 |
3 |
1 |
8 |
6 |
9 |
0 |
7 |
5 |
|
B
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
4 |
9 |
1 |
5 |
6 |
0 |
2 |
8 |
7 |
3 |
2 |
0 |
7 |
8 |
9 |
1 |
5 |
4 |
3 |
6 |
5 |
2 |
9 |
4 |
8 |
3 |
1 |
6 |
0 |
7 |
7 |
5 |
4 |
1 |
3 |
2 |
9 |
0 |
6 |
8 |
1 |
8 |
0 |
7 |
5 |
6 |
4 |
3 |
9 |
2 |
9 |
3 |
6 |
0 |
1 |
7 |
8 |
2 |
5 |
4 |
6 |
4 |
8 |
2 |
7 |
9 |
3 |
5 |
1 |
0 |
8 |
6 |
3 |
9 |
0 |
4 |
7 |
1 |
2 |
5 |
3 |
7 |
5 |
6 |
2 |
8 |
0 |
9 |
4 |
1 |
|
M
1 |
12 |
23 |
34 |
45 |
56 |
67 |
78 |
89 |
100 |
43 |
95 |
20 |
58 |
61 |
4 |
26 |
82 |
77 |
39 |
30 |
8 |
72 |
86 |
97 |
15 |
59 |
44 |
31 |
63 |
52 |
21 |
99 |
47 |
90 |
33 |
18 |
65 |
6 |
74 |
79 |
57 |
46 |
11 |
38 |
22 |
94 |
3 |
70 |
85 |
17 |
84 |
5 |
80 |
53 |
69 |
41 |
36 |
92 |
28 |
96 |
40 |
68 |
9 |
14 |
71 |
83 |
27 |
55 |
42 |
64 |
49 |
81 |
25 |
76 |
98 |
32 |
60 |
13 |
7 |
88 |
66 |
37 |
93 |
2 |
50 |
75 |
19 |
24 |
51 |
35 |
73 |
54 |
62 |
29 |
87 |
10 |
91 |
48 |
16 |
|
For Simple Magic Squares of order 10
the series {0, 1, 2, ... 9} can be replaced by any series
{ai, i = 1 ... 10} and {bj, j = 1 ... 10}.
Magic Square M of order 19 with the numbers 1 ... 361 can be written as
M =
A +
19 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2, 3, 4 ... 18.
The series {0, 1, 2, 3, 4 ... 18} can be split into two sub series - with identical sum (81) - around the center element e.g.:
{0, 1, 2, 3, 13, 14, 15, 16, 17}, {9}, {4, 5, 6, 7, 8, 10, 11, 12, 18}
which can be used for the construction of the two order 9 Sub Squares and - if combined with the common center element 9 -
the two each other overlapping order 10 Sub Squares, as illustrated below:
A
13 |
2 |
3 |
1 |
17 |
15 |
9 |
0 |
16 |
14 |
0 |
13 |
17 |
16 |
2 |
3 |
14 |
15 |
1 |
16 |
14 |
15 |
2 |
1 |
9 |
13 |
17 |
3 |
0 |
16 |
2 |
3 |
14 |
15 |
1 |
0 |
13 |
17 |
3 |
17 |
0 |
13 |
14 |
16 |
1 |
9 |
2 |
15 |
14 |
15 |
1 |
0 |
13 |
17 |
16 |
2 |
3 |
14 |
9 |
16 |
17 |
3 |
0 |
2 |
15 |
13 |
1 |
17 |
0 |
13 |
3 |
16 |
2 |
1 |
14 |
15 |
15 |
3 |
13 |
9 |
2 |
17 |
0 |
14 |
1 |
16 |
3 |
16 |
2 |
1 |
14 |
15 |
17 |
0 |
13 |
17 |
15 |
14 |
0 |
16 |
1 |
3 |
2 |
9 |
13 |
1 |
14 |
15 |
17 |
0 |
13 |
3 |
16 |
2 |
1 |
0 |
17 |
15 |
9 |
2 |
16 |
13 |
14 |
3 |
13 |
17 |
0 |
2 |
3 |
16 |
15 |
1 |
14 |
9 |
16 |
1 |
14 |
15 |
13 |
17 |
3 |
0 |
2 |
2 |
3 |
16 |
15 |
1 |
14 |
13 |
17 |
0 |
2 |
13 |
9 |
16 |
0 |
3 |
14 |
1 |
15 |
17 |
15 |
1 |
14 |
13 |
17 |
0 |
2 |
3 |
16 |
0 |
1 |
2 |
3 |
13 |
14 |
15 |
16 |
17 |
9 |
18 |
12 |
11 |
10 |
8 |
7 |
6 |
5 |
4 |
4 |
8 |
18 |
12 |
6 |
7 |
10 |
11 |
5 |
18 |
11 |
5 |
10 |
7 |
4 |
12 |
9 |
8 |
6 |
12 |
6 |
7 |
10 |
11 |
5 |
4 |
8 |
18 |
6 |
4 |
7 |
18 |
8 |
11 |
10 |
5 |
12 |
9 |
10 |
11 |
5 |
4 |
8 |
18 |
12 |
6 |
7 |
7 |
10 |
8 |
12 |
6 |
9 |
11 |
18 |
4 |
5 |
18 |
4 |
8 |
7 |
12 |
6 |
5 |
10 |
11 |
8 |
9 |
6 |
7 |
5 |
12 |
4 |
10 |
11 |
18 |
7 |
12 |
6 |
5 |
10 |
11 |
18 |
4 |
8 |
12 |
5 |
10 |
4 |
18 |
6 |
9 |
8 |
7 |
11 |
5 |
10 |
11 |
18 |
4 |
8 |
7 |
12 |
6 |
5 |
8 |
11 |
6 |
4 |
7 |
18 |
12 |
9 |
10 |
8 |
18 |
4 |
6 |
7 |
12 |
11 |
5 |
10 |
11 |
6 |
9 |
5 |
12 |
10 |
8 |
4 |
18 |
7 |
6 |
7 |
12 |
11 |
5 |
10 |
8 |
18 |
4 |
4 |
7 |
18 |
8 |
9 |
5 |
6 |
11 |
10 |
12 |
11 |
5 |
10 |
8 |
18 |
4 |
6 |
7 |
12 |
10 |
12 |
4 |
9 |
11 |
18 |
5 |
7 |
6 |
8 |
B
3 |
16 |
14 |
15 |
2 |
17 |
0 |
9 |
13 |
1 |
4 |
12 |
10 |
18 |
7 |
5 |
8 |
6 |
11 |
17 |
15 |
3 |
9 |
0 |
13 |
16 |
1 |
2 |
14 |
8 |
6 |
11 |
4 |
12 |
10 |
18 |
7 |
5 |
15 |
13 |
17 |
2 |
16 |
9 |
3 |
14 |
1 |
0 |
18 |
7 |
5 |
8 |
6 |
11 |
4 |
12 |
10 |
9 |
3 |
15 |
0 |
1 |
16 |
17 |
2 |
14 |
13 |
12 |
10 |
4 |
7 |
5 |
18 |
6 |
11 |
8 |
1 |
17 |
0 |
16 |
14 |
15 |
13 |
3 |
9 |
2 |
6 |
11 |
8 |
12 |
10 |
4 |
7 |
5 |
18 |
16 |
14 |
13 |
1 |
3 |
2 |
9 |
0 |
15 |
17 |
7 |
5 |
18 |
6 |
11 |
8 |
12 |
10 |
4 |
14 |
2 |
9 |
13 |
17 |
3 |
1 |
15 |
0 |
16 |
10 |
4 |
12 |
5 |
18 |
7 |
11 |
8 |
6 |
2 |
0 |
16 |
17 |
9 |
1 |
14 |
13 |
3 |
15 |
11 |
8 |
6 |
10 |
4 |
12 |
5 |
18 |
7 |
13 |
9 |
1 |
14 |
15 |
0 |
2 |
17 |
16 |
3 |
5 |
18 |
7 |
11 |
8 |
6 |
10 |
4 |
12 |
0 |
1 |
2 |
3 |
13 |
14 |
15 |
16 |
17 |
9 |
18 |
12 |
11 |
10 |
8 |
7 |
6 |
5 |
4 |
0 |
16 |
14 |
17 |
3 |
1 |
13 |
2 |
15 |
7 |
12 |
18 |
6 |
4 |
11 |
10 |
5 |
9 |
8 |
13 |
2 |
15 |
0 |
16 |
14 |
17 |
3 |
1 |
11 |
7 |
8 |
10 |
5 |
9 |
18 |
12 |
4 |
6 |
17 |
3 |
1 |
13 |
2 |
15 |
0 |
16 |
14 |
12 |
4 |
11 |
5 |
7 |
18 |
8 |
9 |
6 |
10 |
16 |
14 |
0 |
3 |
1 |
17 |
2 |
15 |
13 |
18 |
11 |
4 |
9 |
6 |
7 |
5 |
8 |
10 |
12 |
2 |
15 |
13 |
16 |
14 |
0 |
3 |
1 |
17 |
6 |
9 |
7 |
8 |
11 |
10 |
12 |
4 |
18 |
5 |
3 |
1 |
17 |
2 |
15 |
13 |
16 |
14 |
0 |
8 |
10 |
6 |
18 |
12 |
5 |
4 |
11 |
7 |
9 |
14 |
0 |
16 |
1 |
17 |
3 |
15 |
13 |
2 |
4 |
5 |
10 |
7 |
9 |
12 |
6 |
18 |
8 |
11 |
15 |
13 |
2 |
14 |
0 |
16 |
1 |
17 |
3 |
10 |
6 |
5 |
12 |
8 |
4 |
9 |
7 |
11 |
18 |
1 |
17 |
3 |
15 |
13 |
2 |
14 |
0 |
16 |
5 |
8 |
9 |
4 |
18 |
6 |
11 |
10 |
12 |
7 |
M = A + 19 * B + [1]
71 |
307 |
270 |
287 |
56 |
339 |
10 |
172 |
264 |
34 |
77 |
242 |
208 |
359 |
136 |
99 |
167 |
130 |
211 |
340 |
300 |
73 |
174 |
2 |
257 |
318 |
37 |
42 |
267 |
169 |
117 |
213 |
91 |
244 |
192 |
343 |
147 |
113 |
289 |
265 |
324 |
52 |
319 |
188 |
59 |
276 |
22 |
16 |
357 |
149 |
97 |
153 |
128 |
227 |
93 |
231 |
194 |
186 |
67 |
302 |
18 |
23 |
305 |
326 |
54 |
280 |
249 |
246 |
191 |
90 |
137 |
112 |
345 |
116 |
224 |
168 |
35 |
327 |
14 |
314 |
269 |
303 |
248 |
72 |
173 |
55 |
118 |
226 |
155 |
230 |
205 |
92 |
151 |
96 |
356 |
322 |
282 |
262 |
20 |
74 |
40 |
175 |
3 |
295 |
337 |
135 |
110 |
358 |
132 |
210 |
166 |
232 |
207 |
79 |
268 |
39 |
189 |
263 |
333 |
60 |
36 |
299 |
15 |
308 |
204 |
94 |
229 |
98 |
346 |
150 |
225 |
154 |
129 |
48 |
17 |
306 |
338 |
187 |
33 |
284 |
251 |
58 |
288 |
212 |
156 |
131 |
206 |
78 |
243 |
109 |
360 |
134 |
250 |
185 |
29 |
283 |
286 |
4 |
53 |
325 |
320 |
75 |
111 |
344 |
148 |
223 |
170 |
115 |
193 |
80 |
245 |
1 |
21 |
41 |
61 |
261 |
281 |
301 |
321 |
341 |
181 |
361 |
241 |
221 |
201 |
161 |
141 |
121 |
101 |
81 |
5 |
313 |
285 |
336 |
64 |
27 |
258 |
50 |
291 |
152 |
240 |
348 |
125 |
84 |
214 |
203 |
105 |
180 |
159 |
260 |
45 |
293 |
11 |
316 |
272 |
328 |
66 |
38 |
216 |
138 |
160 |
209 |
104 |
183 |
353 |
234 |
89 |
124 |
334 |
69 |
25 |
252 |
47 |
304 |
13 |
311 |
274 |
236 |
87 |
218 |
108 |
140 |
352 |
164 |
190 |
119 |
196 |
323 |
271 |
9 |
65 |
32 |
330 |
44 |
296 |
259 |
351 |
219 |
83 |
179 |
120 |
146 |
100 |
163 |
202 |
247 |
46 |
298 |
254 |
310 |
277 |
12 |
76 |
24 |
332 |
127 |
177 |
144 |
157 |
228 |
197 |
238 |
85 |
350 |
107 |
63 |
30 |
335 |
57 |
290 |
256 |
312 |
279 |
7 |
158 |
199 |
126 |
349 |
233 |
103 |
95 |
222 |
143 |
182 |
275 |
19 |
309 |
26 |
331 |
70 |
297 |
253 |
49 |
88 |
102 |
200 |
139 |
184 |
239 |
123 |
347 |
171 |
217 |
292 |
255 |
51 |
278 |
6 |
315 |
28 |
342 |
62 |
195 |
122 |
114 |
237 |
162 |
82 |
178 |
145 |
220 |
355 |
31 |
329 |
68 |
294 |
266 |
43 |
273 |
8 |
317 |
106 |
165 |
176 |
86 |
354 |
133 |
215 |
198 |
235 |
142 |
Attachment 25.9.1 shows a few of the 747 (343 unique) possible
order 19 Series for the integers 0 ... 18, as described above.
Attachment 25.9.2 shows the corresponding 19th order Composed Magic Squares with 10th order Overlapping Sub Squares.
Each square shown corresponds with numerous solutions, which can be obtained by variation of the Latin Sub Squares.
|