Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
25.0 Magic Squares, Higher Order, Overlapping Sub Squares
In Sections 22 thru 24 Composed Simple Inlaid Magic Squares have been discussed for miscellaneous orders.
Magic Squares of order 7, with two 4th order Overlapping Sub Squares with identical Magic Sums have been described in Section 7.7.3.
Magic Squares of order 9, with two 5th order Overlapping Sub Squares with identical Magic Sums have been described in Section 9.7.1.
A classical Magic Square of order 11, with miscellaneous each other Overlapping Sub Squares has been described in
Section 11.2.2.
can be constructed, as illustrated below: s11 = 671 Subject Composed Magic Squares can be based on:
The possible (unique) order 5 Magic Series for the integers 0 ... 10, as applicable for the Latin Sub Squares mentioned above, are shown in
Attachment 25.4.1.
A classical Magic Square of order 13, with miscellaneous each other – asymmetrically - Overlapping Sub Squares has been described in
Section 12.6.
Magic Squares M of order 6 with the numbers 1 ... 36 can be written as M = A + 6 * B + [1] where the squares A and B contain only the integers 0, 1, 2, 3, 4 and 5 as illustrated below for a Magic Square with Symmetrical Diagonals:
For order 6 Magic Squares with Symmetrical Diagonals,
the balanced series {0, 1, 2, 3, 4, 5} can be replaced by any balanced series
{ai, i = 1 ... 6} and {bj, j = 1 ... 6}.
Pan Magic Squares M of order 7 with the numbers 1 ... 49 can be written as M = A + 7 * B + [1] where the squares A and B contain only the integers 0, 1, 2, 3, 4, 5 and 6 as illustrated below for a Pan Magic Square with the center element in the bottom/right corner.
For Pan Magic Squares of order 7
the balanced series {0, 1, 2, 3, 4, 5, 6} can be replaced by any balanced series
{ai, i = 1 ... 7} and {bj, j = 1 ... 7}.
Magic Square M of order 13 with the numbers 1 ... 169 can be written as
M =
A +
13 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2, 3, 4 ... 12.
|
A
10 2 12 11 6 1 0 9 4 5 7 8 3 12 11 6 1 0 10 2 3 8 5 7 4 9 6 1 0 10 2 12 11 3 4 7 5 8 9 0 10 2 12 11 6 1 9 4 7 5 8 3 2 12 11 6 1 0 10 3 8 7 5 4 9 11 6 1 0 10 2 12 9 8 5 7 4 3 1 0 10 2 12 11 6 8 9 5 7 3 4 12 1 2 10 11 0 9 5 7 3 4 6 8 0 11 2 10 1 12 7 3 4 6 8 9 5 0 1 10 2 11 12 4 6 8 9 5 7 3 12 1 10 2 11 0 8 9 5 7 3 4 6 0 11 10 2 1 12 5 7 3 4 6 8 9 12 11 2 10 1 0 3 4 6 8 9 5 7 B = T(A)
10 12 6 0 2 11 1 12 0 0 12 0 12 2 11 1 10 12 6 0 1 11 1 1 11 11 12 6 0 2 11 1 10 2 2 10 10 10 2 11 1 10 12 6 0 2 10 10 2 2 2 10 6 0 2 11 1 10 12 11 1 11 11 1 1 1 10 12 6 0 2 11 0 12 12 0 12 0 0 2 11 1 10 12 6 9 7 4 8 5 3 9 3 3 9 3 9 8 5 3 6 9 7 4 4 8 4 4 8 8 9 7 4 8 5 3 6 5 5 7 7 7 5 5 3 6 9 7 4 8 7 7 5 5 5 7 7 4 8 5 3 6 9 8 4 8 8 4 4 3 6 9 7 4 8 5 3 9 9 3 9 3 4 8 5 3 6 9 7 M = A + 13 * B + [1]
141 159 91 12 33 145 14 166 5 6 164 9 160 39 155 20 132 157 89 3 17 152 19 21 148 153 163 80 1 37 146 26 142 30 31 138 136 139 36 144 24 133 169 90 7 28 140 135 34 32 35 134 81 13 38 150 15 131 167 147 22 151 149 18 23 25 137 158 79 11 29 156 10 165 162 8 161 4 2 27 154 16 143 168 85 126 101 58 112 69 44 130 41 42 128 51 118 114 71 47 82 122 98 61 53 116 55 63 106 117 125 95 57 111 74 49 84 66 67 102 94 103 78 70 46 87 127 97 60 108 104 93 76 68 77 92 100 62 110 73 43 83 124 105 64 115 107 54 65 45 86 121 96 59 113 75 52 129 120 50 119 40 56 109 72 48 88 123 99
The possible (unique) order 6 and 7 Balanced Series for the integers 0 ... 12, as described above, are shown in
Attachment 25.5.1.
A classical Magic Square of order 15, with miscellaneous each other Overlapping Sub Squares has been described in
Section 11.2.2.
Pan Magic Squares M of order 7 with the numbers 1 ... 49 can be written as M = A + 7 * B + [1] where the squares A and B contain only the integers 0, 1, 2, 3, 4, 5 and 6 as illustrated below.
For Pan Magic Squares of order 7
the series {0, 1, 2, 3, 4, 5, 6} can be replaced by any series
{ai, i = 1 ... 7} and {bj, j = 1 ... 7}.
(Pan) Magic Squares M of order 8 with the numbers 1 ... 64 can be written as M = A + 8 * B + [1] where the squares A and B contain only the integers 0, 1, 2, 3, 4, 5, 6 and 7 as illustrated below for a Composed Magic Square:
For Composed Magic Squares the series {0, 1, 2, 3, 4, 5, 6, 7} has to be split into two sub series with identical sum (14),
in the example shown above {0, 2, 5, 7} and {1, 3, 4, 6}.
Magic Square M of order 15 with the numbers 1 ... 225 can be written as
M =
A +
15 * B + [1]
where the squares A and B
contain only the integers 0, 1, 2, 3, 4 ... 14.
|
A
6 1 12 9 6 1 12 9 0 11 9 1 12 10 6 9 12 1 6 9 12 1 6 1 12 10 6 0 11 9 1 6 9 12 1 6 9 12 6 0 11 9 1 12 10 12 9 6 1 12 9 6 1 9 1 12 10 6 0 11 0 7 10 11 0 7 10 11 10 6 0 11 9 1 12 11 10 7 0 11 10 7 0 11 9 1 12 10 6 0 7 0 11 10 7 0 11 10 12 10 6 0 11 9 1 10 11 0 7 10 11 0 7 14 3 4 7 14 3 4 13 5 3 14 8 4 2 4 3 14 7 4 3 14 7 14 8 4 2 13 5 3 14 7 4 3 14 7 4 3 2 13 5 3 14 8 4 3 4 7 14 3 4 7 14 3 14 8 4 2 13 5 13 8 5 2 13 8 5 2 4 2 13 5 3 14 8 2 5 8 13 2 5 8 13 5 3 14 8 4 2 13 8 13 2 5 8 13 2 5 8 4 2 13 5 3 14 5 2 13 8 5 2 13 8 B = T(A)
6 9 1 12 0 11 7 10 13 14 2 3 4 5 8 1 12 6 9 7 10 0 11 5 8 13 14 2 3 4 12 1 9 6 10 7 11 0 3 4 5 8 13 14 2 9 6 12 1 11 0 10 7 14 2 3 4 5 8 13 6 9 1 12 0 11 7 10 8 13 14 2 3 4 5 1 12 6 9 7 10 0 11 4 5 8 13 14 2 3 12 1 9 6 10 7 11 0 2 3 4 5 8 13 14 9 6 12 1 11 0 10 7 4 14 3 13 2 8 5 0 1 6 9 10 11 12 14 3 7 4 8 5 13 2 11 12 0 1 6 9 10 3 14 4 7 5 8 2 13 9 10 11 12 0 1 6 4 7 3 14 2 13 5 8 1 6 9 10 11 12 0 7 4 14 3 13 2 8 5 12 0 1 6 9 10 11 14 3 7 4 8 5 13 2 10 11 12 0 1 6 9 3 14 4 7 5 8 2 13 6 9 10 11 12 0 1 4 7 3 14 2 13 5 8 M = A + 15 * B + [1]
97 137 28 190 7 167 118 160 196 222 40 47 73 86 127 25 193 92 142 115 163 2 172 77 133 206 217 31 57 70 182 22 145 103 152 112 175 13 52 61 87 130 197 223 41 148 100 187 17 178 10 157 107 220 32 58 71 82 121 207 91 143 26 192 1 173 116 162 131 202 211 42 55 62 88 27 191 98 136 117 161 8 166 72 85 122 208 221 37 46 188 16 147 101 158 106 177 11 43 56 67 76 132 205 212 146 102 181 23 176 12 151 113 75 214 50 203 45 124 80 14 21 94 150 159 170 183 215 49 120 68 125 79 210 38 180 189 5 18 104 141 154 60 218 65 109 90 128 35 199 138 164 171 184 15 24 95 64 110 53 225 34 200 83 135 19 105 144 155 168 194 6 119 69 216 48 209 39 126 78 185 3 29 96 139 165 174 213 51 114 74 123 81 204 44 156 169 195 9 20 93 149 54 224 63 111 84 134 33 201 99 140 153 179 186 4 30 66 108 59 219 36 198 89 129
The possible (unique) order 15 Balanced Series for the integers 0 ... 14, as described above, are shown in Attachment 25.6.1.
|
Index | About the Author |