Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
12.0 Special Squares, Higher Order
12.1 Pan Magic Squares (12 x 12) composed of Pan Magic Sub Squares
12.1.1 Barink Squares, Introduction
The 8th order Pan Magic Squares described in section 8.5.2, consisting of 4 perfectly 4 x 4 Pan Magic Squares and satisfying the Franklin property that every 2 × 2 sub square sums to half the Magic Constant, are an example of Barink Squares.
12.1.2 Barink Squares, Analysis
The properties mentioned in section 12.1.1 above result in following set of linear equations:
|
a(37) = 290-a(38)-a(39)-a(40)
a(27) = 290-a(28)-a(39)-a(40)
a(26) = a(28)-a(38)+a(40)
a(25) = -a(28)+a(38)+a(39)
a(16) = 145-a(38)
a(15) = -145+a(38)+a(39)+a(40)
a(14) = 145-a(40)
a(13) = 145-a(39)
a( 4) = 145-a(28)+a(38)-a(40)
a( 3) = 145+a(28)-a(38)-a(39)
a( 2) = 145-a(28)
a( 1) = -145+a(28)+a(39)+a(40)
a(41) = 290-a(42)-a(43)-a(44)
a(31) = 290-a(32)-a(43)-a(44)
a(30) = a(32)-a(42)+a(44)
a(29) = -a(32)+a(42)+a(43)
a(20) = 145-a(42)
a(19) = -145+a(42)+a(43)+a(44)
a(18) = 145-a(44)
a(17) = 145-a(43)
a( 8) = 145-a(32)+a(42)-a(44)
a( 7) = 145+a(32)-a(42)-a(43)
a( 6) = 145-a(32)
a( 5) = -145+a(32)+a(43)+a(44)
a(45) = 290-a(46)-a(47)-a(48)
a(35) = 290-a(36)-a(47)-a(48)
a(34) = a(36)-a(46)+a(48)
a(33) = -a(36)+a(46)+a(47)
a(24) = 145-a(46)
a(23) = -145+a(46)+a(47)+a(48)
a(22) = 145-a(48)
a(21) = 145-a(47)
a(12) = 145-a(36)+a(46)-a(48)
a(11) = 145+a(36)-a(46)-a(47)
a(10) = 145-a(36)
a( 9) = -145+a(36)+a(47)+a(48)
a(85) = 290-a(86)-a(87)-a(88)
a(75) = 290-a(76)-a(87)-a(88)
a(74) = a(76)-a(86)+a(88)
a(73) = -a(76)+a(86)+a(87)
a(64) = 145-a(86)
a(63) = -145+a(86)+a(87)+a(88)
a(62) = 145-a(88)
a(61) = 145-a(87)
a(52) = 145-a(76)+a(86)-a(88)
a(51) = 145+a(76)-a(86)-a(87)
a(50) = 145-a(76)
a(49) = -145+a(76)+a(87)+a(88)
a(89) = 290-a(90)-a(91)-a(92)
a(79) = 290-a(80)-a(91)-a(92)
a(78) = a(80)-a(90)+a(92)
a(77) = -a(80)+a(90)+a(91)
a(68) = 145-a(90)
a(67) = -145+a(90)+a(91)+a(92)
a(66) = 145-a(92)
a(65) = 145-a(91)
a(56) = 145-a(80)+a(90)-a(92)
a(55) = 145+a(80)-a(90)-a(91)
a(54) = 145-a(80)
a(53) = -145+a(80)+a(91)+a(92)
a(93) = 290-a(94)-a(95)-a(96)
a(83) = 290-a(84)-a(95)-a(96)
a(82) = a(84)-a(94)+a(96)
a(81) = -a(84)+a(94)+a(95)
a(72) = 145-a(94)
a(71) = -145+a(94)+a(95)+a(96)
a(70) = 145-a(96)
a(69) = 145-a(95)
a(60) = 145-a(84)+a(94)-a(96)
a(59) = 145+a(84)-a(94)-a(95)
a(58) = 145-a(84)
a(57) = -145+a(84)+a(95)+a(96)
a(133) = 290-a(134)-a(135)-a(136)
a(123) = 290-a(124)-a(135)-a(136)
a(122) = a(124)-a(134)+a(136)
a(121) = -a(124)+a(134)+a(135)
a(112) = 145-a(134)
a(111) = -145+a(134)+a(135)+a(136)
a(110) = 145-a(136)
a(109) = 145-a(135)
a(100) = 145-a(124)+a(134)-a(136)
a( 99) = 145+a(124)-a(134)-a(135)
a( 98) = 145-a(124)
a( 97) = -145+a(124)+a(135)+a(136)a(137) = 290-a(138)-a(139)-a(140)
a(127) = 290-a(128)-a(139)-a(140)
a(126) = a(128)-a(138)+a(140)
a(125) = -a(128)+a(138)+a(139)
a(116) = 145-a(138)
a(115) = -145+a(138)+a(139)+a(140)
a(114) = 145-a(140)
a(113) = 145-a(139)
a(104) = 145-a(128)+a(138)-a(140)
a(103) = 145+a(128)-a(138)-a(139)
a(102) = 145-a(128)
a(101) = -145+a(128)+a(139)+a(140)a(141) = 290-a(142)-a(143)-a(144)
a(131) = 290-a(132)-a(143)-a(144)
a(130) = a(132)-a(142)+a(144)
a(129) = -a(132)+a(142)+a(143)
a(120) = 145-a(142)
a(119) = -145+a(142)+a(143)+a(144)
a(118) = 145-a(144)
a(117) = 145-a(143)
a(108) = 145-a(132)+a(142)-a(144)
a(107) = 145+a(132)-a(142)-a(143)
a(106) = 145-a(132)
a(105) = -145+a(132)+a(143)+a(144)
This includes that the numbers of the main diagonals sum to the Magic Constant.
Following equations ensure that also the numbers of all the broken diagonals parallel to it sum to the Magic Constant as well:
a( 2) + a(15) + a(28) + a(41) + a(54) + a(67) + a(80) + a(93) + a(106) + a(119) + a(132) + a(133) = 870
Every 2 × 2 sub square sums to one third of the Magic Constant:
a(i) + a(i+1) + a(i+12) + a(i+13) = 290 with 1 =< i < 132 and i ≠ 12*n for n = 1, 2 ... 11
Any 4 consecutive numbers starting on any odd place in a row or column sum also to one third of the Magic Constant.
|
a( 3) + a( 4) + a( 5) + a( 6) = 290
a(15) + a(16) + a(17) + a(18) = 290
a(27) + a(28) + a(29) + a(30) = 290
a(39) + a(40) + a(41) + a(42) = 290
a(51) + a(52) + a(53) + a(54) = 290
a(63) + a(64) + a(65) + a(66) = 290
a(75) + a(76) + a(77) + a(78) = 290
a(87) + a(88) + a(89) + a(90) = 290
a(99) + a(100)+ a(101)+ a(102)= 290
a(111)+ a(112)+ a(113)+ a(114)= 290
a(123)+ a(124)+ a(125)+ a(126)= 290
a(135)+ a(136)+ a(137)+ a(138)= 290
a( 7) + a( 8) + a( 9) + a(10) = 290
a(19) + a(20) + a(21) + a(22) = 290
a(31) + a(32) + a(33) + a(34) = 290
a(43) + a(44) + a(45) + a(46) = 290
a(55) + a(56) + a(57) + a(58) = 290
a(67) + a(68) + a(69) + a(70) = 290
a(79) + a(80) + a(81) + a(82) = 290
a(91) + a(92) + a(93) + a(94) = 290
a(103)+ a(104)+ a(105)+ a(106)= 290
a(115)+ a(116)+ a(117)+ a(118)= 290
a(127)+ a(128)+ a(129)+ a(130)= 290
a(139)+ a(140)+ a(141)+ a(142)= 290
a(11) + a(12) + a( 1) + a( 2) = 290
a(23) + a(24) + a(13) + a(14) = 290
a(35) + a(36) + a(25) + a(26) = 290
a(47) + a(48) + a(37) + a(38) = 290
a(59) + a(60) + a(49) + a(50) = 290
a(71) + a(72) + a(61) + a(62) = 290
a(83) + a(84) + a(73) + a(74) = 290
a(95) + a(96) + a(85) + a(86) = 290
a(107)+ a(108)+ a(97) + a(98) = 290
a(119)+ a(120)+ a(109)+ a(110)= 290
a(131)+ a(132)+ a(121)+ a(122)= 290
a(143)+ a(144)+ a(133)+ a(134)= 290
a(25) + a(37) + a(49) + a(61) = 290
a(26) + a(38) + a(50) + a(62) = 290
a(27) + a(39) + a(51) + a(63) = 290
a(28) + a(40) + a(52) + a(64) = 290
a(29) + a(41) + a(53) + a(65) = 290
a(30) + a(42) + a(54) + a(66) = 290
a(31) + a(43) + a(55) + a(67) = 290
a(32) + a(44) + a(56) + a(68) = 290
a(33) + a(45) + a(57) + a(69) = 290
a(34) + a(46) + a(58) + a(70) = 290
a(35) + a(47) + a(59) + a(71) = 290
a(36) + a(48) + a(60) + a(72) = 290a(73) + a(85) + a(97) + a(109)= 290
a(74) + a(86) + a(98) + a(110)= 290
a(75) + a(87) + a(99) + a(111)= 290
a(76) + a(88) + a(100)+ a(112)= 290
a(77) + a(89) + a(101)+ a(113)= 290
a(78) + a(90) + a(102)+ a(114)= 290
a(79) + a(91) + a(103)+ a(115)= 290
a(80) + a(92) + a(104)+ a(116)= 290
a(81) + a(93) + a(105)+ a(117)= 290
a(82) + a(94) + a(106)+ a(118)= 290
a(83) + a(95) + a(107)+ a(119)= 290
a(84) + a(96) + a(108)+ a(120)= 290a(121) + a(133)+ a( 1)+ a(13) = 290
a(122) + a(134)+ a( 2)+ a(14) = 290
a(123) + a(135)+ a( 3)+ a(15) = 290
a(124) + a(136)+ a( 4)+ a(16) = 290
a(125) + a(137)+ a( 5)+ a(17) = 290
a(126) + a(138)+ a( 6)+ a(18) = 290
a(127) + a(139)+ a( 7)+ a(19) = 290
a(128) + a(140)+ a( 8)+ a(20) = 290
a(129) + a(141)+ a( 9)+ a(21) = 290
a(130) + a(142)+ a(10)+ a(22) = 290
a(131) + a(143)+ a(11)+ a(23) = 290
a(132) + a(144)+ a(12)+ a(24) = 290
The resulting number of equations can be written in the matrix representation as:
which can be reduced, by means of row and column manipulations, and results in following set of linear equations:
a(141) = 290 - a(142) - a(143) - a(144)
The solutions can be obtained by guessing a(48), a(96), a(132), a(136), a(140), a(142) ... a(144)
and filling out these guesses in the abovementioned equations.
0 < a(i) =< 144 for i = 1, 2, ... 47, 49 ... 95, 97 ... 131, 133 ... 135, 137 ... 139 and 141
With a(144) = 72 and a(143) = 74 , an optimized guessing routine (MgcSqr12a), produced 768 Pan Magic Squares for a(142) = 11, 17, 19, 21 and 23 (ref. Attachment 12.1 ).
|
Index | About the Author |