Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
12.0 Special Squares, Higher Order
12.1 Pan Magic Squares (12 x 12) composed of Pan Magic Sub Squares
12.1.4 Hendricks Squares, Introduction
The 12th order Pan Magic Square shown below is constructed by John Hendricks.
The square is composed out of
nine 4th order Pan Magic Sub Squares and contains - in addition to this -
sixteen 4th order Embeddeb Magic Squares.
12.1.5 Hendricks Squares, Analysis
The properties mentioned in section 12.1.4 above result in following set of linear equations:
with i1 ... i16 the indices in the main square for the applicable Pan Magic Sub Square.
with i1 ... i16 the indices in the main square for the applicable Embedded Magic Square.
a( 2) + a(15) + a(28) + a(41) + a(54) + a(67) + a(80) + a(93) + a(106) + a(119) + a(132) + a(133) = 870
The resulting number of equations can be written in the matrix representation as:
which can be reduced, by means of row and column manipulations, and results in following set of linear equations: a(141) = 290 - a(142) - a(143) - a(144) a(139) = - a(140) + a(143) + a(144) a(138) = a(140) + a(142) - a(144) a(137) = 290 - a(140) - a(142) - a(143) a(135) = - a(136) + a(143) + a(144) a(134) = a(136) + a(142) - a(144) a(133) = 290 - a(136) - a(142) - a(143) a(131) = 290 - a(132) - a(143) - a(144) a(130) = a(132) - a(142) + a(144) a(129) = - a(132) + a(142) + a(143) a(128) = a(132) + a(140) - a(144) a(127) = 290 - a(132) - a(140) - a(143) a(126) = a(132) + a(140) - a(142) a(125) = - a(132) - a(140) + a(142) + a(143) + a(144) a(124) = a(132) + a(136) - a(144) a(123) = 290 - a(132) - a(136) - a(143) a(122) = a(132) + a(136) - a(142) a(121) = - a(132) - a(136) + a(142) + a(143) + a(144) a(120) = 145 - a(142) a(119) =-145 + a(142) + a(143) + a(144) a(118) = 145 - a(144) a(117) = 145 - a(143) a(116) = 145 - a(140) - a(142) + a(144) a(115) =-145 + a(140) + a(142) + a(143) a(114) = 145 - a(140) a(113) = 145 + a(140) - a(143) - a(144) a(112) = 145 - a(136) - a(142) + a(144) a(111) =-145 + a(136) + a(142) + a(143) a(110) = 145 - a(136) a(109) = 145 + a(136) - a(143) - a(144) a(108) = 145 - a(132) + a(142) - a(144) a(107) = 145 + a(132) - a(142) - a(143) a(106) = 145 - a(132) a(105) =-145 + a(132) + a(143) + a(144) a(104) = 145 - a(132) - a(140) + a(142) a(103) = 145 + a(132) + a(140) - a(142) - a(143) - a(144) a(102) = 145 - a(132) - a(140) + a(144) a(101) =-145 + a(132) + a(140) + a(143) a(100) = 145 - a(132) - a(136) + a(142) a(99) = 145 + a(132) + a(136) - a(142) - a(143) - a(144) a(98) = 145 - a(132) - a(136) + a(144) a(97) =-145 + a(132) + a(136) + a(143) a(95) = a(96) + a(143) - a(144) a(94) = - a(96) + a(142) + a(144) a(93) = 290 - a(96) - a(142) - a(143) a(92) = a(96) + a(140) - a(144) a(91) = a(96) - a(140) + a(143) a(90) = - a(96) + a(140) + a(142) a(89) = 290 - a(96) - a(140) - a(142) - a(143) + a(144) a(88) = a(96) + a(136) - a(144) a(87) = a(96) - a(136) + a(143) a(86) = - a(96) + a(136) + a(142) a(85) = 290 - a(96) - a(136) - a(142) - a(143) + a(144) a(84) = - a(96) + a(132) + a(144) a(83) = 290 - a(96) - a(132) - a(143) a(82) = a(96) + a(132) - a(142) a(81) = a(96) - a(132) + a(142) + a(143) - a(144) a(80) = - a(96) + a(132) + a(140) a(79) = 290 - a(96) - a(132) - a(140) - a(143) + a(144) a(78) = a(96) + a(132) + a(140) - a(142) - a(144) a(77) = a(96) - a(132) - a(140) + a(142) + a(143) a(76) = - a(96) + a(132) + a(136) a(75) = 290 - a(96) - a(132) - a(136) - a(143) + a(144) a(74) = a(96) + a(132) + a(136) - a(142) - a(144) a(73) = a(96) - a(132) - a(136) + a(142) + a(143) a(72) = 145 + a(96) - a(142) - a(144) a(71) =-145 + a(96) + a(142) + a(143) a(70) = 145 - a(96) a(69) = 145 - a(96) - a(143) + a(144) a(68) = 145 + a(96) - a(140) - a(142) a(67) =-145 + a(96) + a(140) + a(142) + a(143) - a(144) a(66) = 145 - a(96) - a(140) + a(144) a(65) = 145 - a(96) + a(140) - a(143) a(64) = 145 + a(96) - a(136) - a(142) a(63) =-145 + a(96) + a(136) + a(142) + a(143) - a(144) a(62) = 145 - a(96) - a(136) + a(144) a(61) = 145 - a(96) + a(136) - a(143) a(60) = 145 - a(96) - a(132) + a(142) a(59) = 145 - a(96) + a(132) - a(142) - a(143) + a(144) a(58) = 145 + a(96) - a(132) - a(144) a(57) =-145 + a(96) + a(132) + a(143) a(56) = 145 - a(96) - a(132) - a(140) + a(142) + a(144) a(55) = 145 - a(96) + a(132) + a(140) - a(142) - a(143) a(54) = 145 + a(96) - a(132) - a(140) a(53) =-145 + a(96) + a(132) + a(140) + a(143) - a(144) a(52) = 145 - a(96) - a(132) - a(136) + a(142) + a(144) a(51) = 145 - a(96) + a(132) + a(136) - a(142) - a(143) a(50) = 145 + a(96) - a(132) - a(136) a(49) =-145 + a(96) + a(132) + a(136) + a(143) - a(144) a(47) = a(48) + a(143) - a(144) a(46) = - a(48) + a(142) + a(144) a(45) = 290 - a(48) - a(142) - a(143) a(44) = a(48) + a(140) - a(144) a(43) = a(48) - a(140) + a(143) a(42) = - a(48) + a(140) + a(142) a(41) = 290 - a(48) - a(140) - a(142) - a(143) + a(144) a(40) = a(48) + a(136) - a(144) a(39) = a(48) - a(136) + a(143) a(38) = - a(48) + a(136) + a(142) a(37) = 290 - a(48) - a(136) - a(142) - a(143) + a(144) a(36) = - a(48) + a(132) + a(144) a(35) = 290 - a(48) - a(132) - a(143) a(34) = a(48) + a(132) - a(142) a(33) = a(48) - a(132) + a(142) + a(143) - a(144) a(32) = - a(48) + a(132) + a(140) a(31) = 290 - a(48) - a(132) - a(140) - a(143) + a(144) a(30) = a(48) + a(132) + a(140) - a(142) - a(144) a(29) = a(48) - a(132) - a(140) + a(142) + a(143) a(28) = - a(48) + a(132) + a(136) a(27) = 290 - a(48) - a(132) - a(136) - a(143) + a(144) a(26) = a(48) + a(132) + a(136) - a(142) - a(144) a(25) = a(48) - a(132) - a(136) + a(142) + a(143) a(24) = 145 + a(48) - a(142) - a(144) a(23) =-145 + a(48) + a(142) + a(143) a(22) = 145 - a(48) a(21) = 145 - a(48) - a(143) + a(144) a(20) = 145 + a(48) - a(140) - a(142) a(19) =-145 + a(48) + a(140) + a(142) + a(143) - a(144) a(18) = 145 - a(48) - a(140) + a(144) a(17) = 145 - a(48) + a(140) - a(143) a(16) = 145 + a(48) - a(136) - a(142) a(15) =-145 + a(48) + a(136) + a(142) + a(143) - a(144) a(14) = 145 - a(48) - a(136) + a(144) a(13) = 145 - a(48) + a(136) - a(143) a(12) = 145 - a(48) - a(132) + a(142) a(11) = 145 - a(48) + a(132) - a(142) - a(143) + a(144) a(10) = 145 + a(48) - a(132) - a(144) a( 9) =-145 + a(48) + a(132) + a(143) a( 8) = 145 - a(48) - a(132) - a(140) + a(142) + a(144) a( 7) = 145 - a(48) + a(132) + a(140) - a(142) - a(143) a( 6) = 145 + a(48) - a(132) - a(140) a( 5) =-145 + a(48) + a(132) + a(140) + a(143) - a(144) a( 4) = 145 - a(48) - a(132) - a(136) + a(142) + a(144) a( 3) = 145 - a(48) + a(132) + a(136) - a(142) - a(143) a( 2) = 145 + a(48) - a(132) - a(136) a( 1) =-145 + a(48) + a(132) + a(136) + a(143) - a(144)
The solutions can be obtained by guessing a(48), a(96), a(132), a(136), a(140), a(142) ... a(144)
and filling out these guesses in the abovementioned equations.
0 < a(i) =< 144 for i = 1, 2, ... 47, 49 ... 95, 97 ... 131, 133 ... 135, 137 ... 139 and 141
With the bottom/left corner square constant,
an optimized guessing routine (MgcSqr12d),
produced 128 Composed Pan Magic Squares within 18,0 seconds,
which are shown in Attachment 12.3.
The linear equations, deducted in Section 12.1.2 and Section 12.1.5 above, have been applied in following Excel Spread Sheets:
The red figures have to be “guessed” to construct the applicable Composed Pan Magic Square of the 12th order (wrong solutions are obvious).
|
Index | About the Author |