Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
a( 1) + a(79) = s1/6
a( 2) + a(80) = s1/6
a( 3) + a(81) = s1/6
a( 4) + a(82) = s1/6
a( 5) + a(83) = s1/6
a( 6) + a(84) = s1/6
a( 7) + a(73) = s1/6
a( 8) + a(74) = s1/6
a( 9) + a(75) = s1/6
a(10) + a(76) = s1/6
a(11) + a(77) = s1/6
a(12) + a(78) = s1/6
a(13) + a(91) = s1/6
a(14) + a(92) = s1/6
a(15) + a(93) = s1/6
a(16) + a(94) = s1/6
a(17) + a(95) = s1/6
a(18) + a(96) = s1/6a(19) + a( 85) = s1/6
a(20) + a( 86) = s1/6
a(21) + a( 87) = s1/6
a(22) + a( 88) = s1/6
a(23) + a( 89) = s1/6
a(24) + a( 90) = s1/6
a(25) + a(103) = s1/6
a(26) + a(104) = s1/6
a(27) + a(105) = s1/6
a(28) + a(106) = s1/6
a(29) + a(107) = s1/6
a(30) + a(108) = s1/6
a(31) + a( 97) = s1/6
a(32) + a( 98) = s1/6
a(33) + a( 99) = s1/6
a(34) + a(100) = s1/6
a(35) + a(101) = s1/6
a(36) + a(102) = s1/6a(37) + a(115) = s1/6
a(38) + a(116) = s1/6
a(39) + a(117) = s1/6
a(40) + a(118) = s1/6
a(41) + a(119) = s1/6
a(42) + a(120) = s1/6
a(43) + a(109) = s1/6
a(44) + a(110) = s1/6
a(45) + a(111) = s1/6
a(46) + a(112) = s1/6
a(47) + a(113) = s1/6
a(48) + a(114) = s1/6
a(49) + a(127) = s1/6
a(50) + a(128) = s1/6
a(51) + a(129) = s1/6
a(52) + a(130) = s1/6
a(53) + a(131) = s1/6
a(54) + a(132) = s1/6a(55) + a(121) = s1/6
a(56) + a(122) = s1/6
a(57) + a(123) = s1/6
a(58) + a(124) = s1/6
a(59) + a(125) = s1/6
a(60) + a(126) = s1/6
a(61) + a(139) = s1/6
a(62) + a(140) = s1/6
a(63) + a(141) = s1/6
a(64) + a(142) = s1/6
a(65) + a(143) = s1/6
a(66) + a(144) = s1/6
a(67) + a(133) = s1/6
a(68) + a(134) = s1/6
a(69) + a(135) = s1/6
a(70) + a(136) = s1/6
a(71) + a(137) = s1/6
a(72) + a(138) = s1/6
Any row or column can be divided in three parts summing to s1/3:
a( 1) + a( 2) + a( 3) + a( 4) = s1/3
a(13) + a(14) + a(15) + a(16) = s1/3
a(25) + a(26) + a(27) + a(28) = s1/3
a(37) + a(38) + a(39) + a(40) = s1/3
a(49) + a(50) + a(51) + a(52) = s1/3
a(61) + a(62) + a(63) + a(64) = s1/3
a(73) + a(74) + a(75) + a(76) = s1/3
a(85) + a(86) + a(87) + a(88) = s1/3
a( 97)+ a( 98)+ a( 99)+ a(100)= s1/3
a(109)+ a(110)+ a(111)+ a(112)= s1/3
a(121)+ a(122)+ a(123)+ a(124)= s1/3
a(133)+ a(134)+ a(135)+ a(136)= s1/3
a( 5) + a( 6) + a( 7) + a( 8) = s1/3
a(17) + a(18) + a(19) + a(20) = s1/3
a(29) + a(30) + a(31) + a(32) = s1/3
a(41) + a(42) + a(43) + a(44) = s1/3
a(53) + a(54) + a(55) + a(56) = s1/3
a(65) + a(66) + a(67) + a(68) = s1/3
a(77) + a(78) + a(79) + a(80) = s1/3
a(89) + a(90) + a(91) + a(92) = s1/3
a(101)+ a(102)+ a(103)+ a(104)= s1/3
a(113)+ a(114)+ a(115)+ a(116)= s1/3
a(125)+ a(126)+ a(127)+ a(128)= s1/3
a(137)+ a(138)+ a(139)+ a(140)= s1/3
a( 9) + a(10) + a(11) + a(12) = s1/3
a(21) + a(22) + a(23) + a(24) = s1/3
a(33) + a(34) + a(35) + a(36) = s1/3
a(45) + a(46) + a(47) + a(48) = s1/3
a(57) + a(58) + a(59) + a(60) = s1/3
a(69) + a(70) + a(71) + a(72) = s1/3
a(81) + a(82) + a(83) + a(84) = s1/3
a(93) + a(94) + a(95) + a(96) = s1/3
a(105)+ a(106)+ a(107)+ a(108)= s1/3
a(117)+ a(118)+ a(119)+ a(120)= s1/3
a(129)+ a(130)+ a(131)+ a(132)= s1/3
a(141)+ a(142)+ a(143)+ a(144)= s1/3
a( 1) + a(13) + a(25) + a(37) = s1/3
a( 2) + a(14) + a(26) + a(38) = s1/3
a( 3) + a(15) + a(27) + a(39) = s1/3
a( 4) + a(16) + a(28) + a(40) = s1/3
a(49) + a(61) + a(73) + a(85) = s1/3
a(50) + a(62) + a(74) + a(86) = s1/3
a(51) + a(63) + a(75) + a(87) = s1/3
a(52) + a(64) + a(76) + a(88) = s1/3
a( 97)+ a(109)+ a(121)+ a(133)= s1/3
a( 98)+ a(110)+ a(122)+ a(134)= s1/3
a( 99)+ a(111)+ a(123)+ a(135)= s1/3
a(100)+ a(112)+ a(124)+ a(136)= s1/3a( 5) + a(17) + a(29) + a(41) = s1/3
a( 6) + a(18) + a(30) + a(42) = s1/3
a( 7) + a(19) + a(31) + a(43) = s1/3
a( 8) + a(20) + a(32) + a(44) = s1/3
a(53) + a(65) + a(77) + a(89) = s1/3
a(54) + a(66) + a(78) + a(90) = s1/3
a(55) + a(67) + a(79) + a(91) = s1/3
a(56) + a(68) + a(80) + a(92) = s1/3
a(101)+ a(113)+ a(125)+ a(137)= s1/3
a(102)+ a(114)+ a(126)+ a(138)= s1/3
a(103)+ a(115)+ a(127)+ a(139)= s1/3
a(104)+ a(116)+ a(128)+ a(140)= s1/3
a( 9) + a(21) + a(33) + a(45) = s1/3
a(10) + a(22) + a(34) + a(46) = s1/3
a(11) + a(23) + a(35) + a(47) = s1/3
a(12) + a(24) + a(36) + a(48) = s1/3
a(57) + a(69) + a(81) + a(93) = s1/3
a(58) + a(70) + a(82) + a(94) = s1/3
a(59) + a(71) + a(83) + a(95) = s1/3
a(60) + a(72) + a(84) + a(96) = s1/3
a(105)+ a(117)+ a(129)+ a(141)= s1/3
a(106)+ a(118)+ a(130)+ a(142)= s1/3
a(107)+ a(119)+ a(131)+ a(143)= s1/3
a(108)+ a(120)+ a(132)+ a(144)= s1/3
The resulting number of equations can be written in the matrix representation as:
which can be reduced, by means of row and column manipulations, and results in following set of linear equations: a(141) = 4 * s1 / 12 - a(142) - a(143) - a(144) a(139) = - a(140) + a(143) + a(144) a(137) = 4 * s1 / 12 - a(138) - a(143) - a(144) a(136) = a(138) - a(142) + a(144) a(135) = - a(138) + a(142) + a(143) a(134) = a(138) - a(140) + a(144) a(133) = 4 * s1 / 12 - a(138) + a(140) - a(143) - 2 * a(144) a(131) = 4 * s1 / 12 - a(132) - a(143) - a(144) a(130) = a(132) - a(142) + a(144) a(129) = - a(132) + a(142) + a(143) a(128) = a(132) - a(140) + a(144) a(127) = 4 * s1 / 12 - a(132) + a(140) - a(143) - 2 * a(144) a(126) = a(132) - a(138) + a(144) a(125) = - a(132) + a(138) + a(143) a(124) = a(132) - a(138) + a(142) a(122) = a(132) - a(138) + a(140) a(123) = 4 * s1 / 12 - a(132) + a(138) - a(142) - a(143) - a(144): a(121) = - a(132) + a(138) - a(140) + a(143) + a(144) a(119) = - a(120) + a(143) + a(144) a(118) = a(120) + a(142) - a(144) a(117) = 4 * s1 / 12 - a(120) - a(142) - a(143) a(116) = a(120) + a(140) - a(144) a(115) = - a(120) - a(140) + a(143) + 2 * a(144) a(114) = a(120) + a(138) - a(144) a(113) = 4 * s1 / 12 - a(120) - a(138) - a(143) a(112) = a(120) + a(138) - a(142) a(111) = - a(120) - a(138) + a(142) + a(143) + a(144) a(110) = a(120) + a(138) - a(140) a(109) = 4 * s1 / 12 - a(120) - a(138) + a(140) - a(143) - a(144): a(108) = 4 * s1 / 12 - a(120) - a(132) - a(144) a(107) = a(120) + a(132) - a(143) a(106) = 4 * s1 / 12 - a(120) - a(132) - a(142) a(105) = -4 * s1 / 12 + a(120) + a(132) + a(142) + a(143) + a(144) a(104) = 4 * s1 / 12 - a(120) - a(132) - a(140) a(103) = a(120) + a(132) + a(140) - a(143) - a(144) a(102) = 4 * s1 / 12 - a(120) - a(132) - a(138) a(101) = -4 * s1 / 12 + a(120) + a(132) + a(138) + a(143) + a(144) a(100) = 4 * s1 / 12 - a(120) - a(132) - a(138) + a(142) - a(144) a( 99) = a(120) + a(132) + a(138) - a(142) - a(143) a( 98) = 4 * s1 / 12 - a(120) - a(132) - a(138) + a(140) - a(144) a( 97) = -4 * s1 / 12 + a(120) + a(132) + a(138) - a(140) + a(143) + 2 * a(144) a( 95) = - a(96) + a(143) + a(144) a( 94) = a(96) + a(142) - a(144) a( 93) = 4 * s1 / 12 - a(96) - a(142) - a(143) a( 92) = a(96) + a(140) - a(144) a( 91) = - a(96) - a(140) + a(143) + 2 * a(144) a( 90) = a(96) + a(138) - a(144) a( 89) = 4 * s1 / 12 - a(96) - a(138) - a(143) a( 88) = a(96) + a(138) - a(142) a( 87) = - a(96) - a(138) + a(142) + a(143) + a(144) a( 86) = a(96) + a(138) - a(140) a( 85) = 4 * s1 / 12 - a(96) - a(138) + a(140) - a(143) - a(144) a( 84) = - a(96) + a(132) + a(144) a( 83) = 4 * s1 / 12 + a(96) - a(132) - a(143) - 2 * a(144) a( 82) = - a(96) + a(132) - a(142) + 2 * a(144) a( 81) = a(96) - a(132) + a(142) + a(143) - a(144) a( 80) = - a(96) + a(132) - a(140) + 2 * a(144) a( 79) = 4 * s1 / 12 + a(96) - a(132) + a(140) - a(143) - 3 * a(144) a( 78) = - a(96) + a(132) - a(138) + 2 * a(144) a( 77) = a(96) - a(132) + a(138) + a(143) - a(144) a( 76) = - a(96) + a(132) - a(138) + a(142) + a(144) a( 75) = 4 * s1 / 12 + a(96) - a(132) + a(138) - a(142) - a(143) - 2 * a(144) a( 74) = - a(96) + a(132) - a(138) + a(140) + a(144) a( 73) = a(96) - a(132) + a(138) - a(140) + a(143)
The solutions can be obtained by guessing:
0 < a(i) =< 144 for i = 1, 2 ... 95, 97 ... 119, 121 ... 131, 133 ... 137, 139, 141
An optimized guessing routine (MgcSqr12e) produced,
with a(144) = 1 and a(143) = 138,
3072 Most Perfect Magic Squares within 1010 seconds, of which the first 384 are shown in Attachment 12.2e.
|
Index | About the Author |