Office Applications and Entertainment, Magic Squares | ||
Index | About the Author |
a( 1) + a(79) = s1/6
a( 2) + a(80) = s1/6
a( 3) + a(81) = s1/6
a( 4) + a(82) = s1/6
a( 5) + a(83) = s1/6
a( 6) + a(84) = s1/6
a( 7) + a(73) = s1/6
a( 8) + a(74) = s1/6
a( 9) + a(75) = s1/6
a(10) + a(76) = s1/6
a(11) + a(77) = s1/6
a(12) + a(78) = s1/6
a(13) + a(91) = s1/6
a(14) + a(92) = s1/6
a(15) + a(93) = s1/6
a(16) + a(94) = s1/6
a(17) + a(95) = s1/6
a(18) + a(96) = s1/6a(19) + a( 85) = s1/6
a(20) + a( 86) = s1/6
a(21) + a( 87) = s1/6
a(22) + a( 88) = s1/6
a(23) + a( 89) = s1/6
a(24) + a( 90) = s1/6
a(25) + a(103) = s1/6
a(26) + a(104) = s1/6
a(27) + a(105) = s1/6
a(28) + a(106) = s1/6
a(29) + a(107) = s1/6
a(30) + a(108) = s1/6
a(31) + a( 97) = s1/6
a(32) + a( 98) = s1/6
a(33) + a( 99) = s1/6
a(34) + a(100) = s1/6
a(35) + a(101) = s1/6
a(36) + a(102) = s1/6a(37) + a(115) = s1/6
a(38) + a(116) = s1/6
a(39) + a(117) = s1/6
a(40) + a(118) = s1/6
a(41) + a(119) = s1/6
a(42) + a(120) = s1/6
a(43) + a(109) = s1/6
a(44) + a(110) = s1/6
a(45) + a(111) = s1/6
a(46) + a(112) = s1/6
a(47) + a(113) = s1/6
a(48) + a(114) = s1/6
a(49) + a(127) = s1/6
a(50) + a(128) = s1/6
a(51) + a(129) = s1/6
a(52) + a(130) = s1/6
a(53) + a(131) = s1/6
a(54) + a(132) = s1/6a(55) + a(121) = s1/6
a(56) + a(122) = s1/6
a(57) + a(123) = s1/6
a(58) + a(124) = s1/6
a(59) + a(125) = s1/6
a(60) + a(126) = s1/6
a(61) + a(139) = s1/6
a(62) + a(140) = s1/6
a(63) + a(141) = s1/6
a(64) + a(142) = s1/6
a(65) + a(143) = s1/6
a(66) + a(144) = s1/6
a(67) + a(133) = s1/6
a(68) + a(134) = s1/6
a(69) + a(135) = s1/6
a(70) + a(136) = s1/6
a(71) + a(137) = s1/6
a(72) + a(138) = s1/6
Any row or column can be divided in two parts summing to s1/2:
a( 1) + a( 2) + a( 3) + a( 4) + a( 5) + a( 6) = s1/2
a( 7) + a( 8) + a( 9) + a(10) + a(11) + a(12) = s1/2
a(13) + a(14) + a(15) + a(16) + a(17) + a(18) = s1/2
a(19) + a(20) + a(21) + a(22) + a(23) + a(24) = s1/2
a(25) + a(26) + a(27) + a(28) + a(29) + a(30) = s1/2
a(31) + a(32) + a(33) + a(34) + a(35) + a(36) = s1/2
a(37) + a(38) + a(39) + a(40) + a(41) + a(42) = s1/2
a(43) + a(44) + a(45) + a(46) + a(47) + a(48) = s1/2
a(49) + a(50) + a(51) + a(52) + a(53) + a(54) = s1/2
a(55) + a(56) + a(57) + a(58) + a(59) + a(60) = s1/2
a(61) + a(62) + a(63) + a(64) + a(65) + a(66) = s1/2
a(67) + a(68) + a(69) + a(70) + a(71) + a(72) = s1/2
a( 73) + a( 74) + a( 75) + a( 76) + a( 77) + a( 78)= s1/2
a( 79) + a( 80) + a( 81) + a( 82) + a( 83) + a( 84)= s1/2
a( 85) + a( 86) + a( 87) + a( 88) + a( 89) + a( 90)= s1/2
a( 91) + a( 92) + a( 93) + a( 94) + a( 95) + a( 96)= s1/2
a( 97) + a( 98) + a( 99) + a(100) + a(101) + a(102)= s1/2
a(103) + a(104) + a(105) + a(106) + a(107) + a(108)= s1/2
a(109) + a(110) + a(111) + a(112) + a(113) + a(114)= s1/2
a(115) + a(116) + a(117) + a(118) + a(119) + a(120)= s1/2
a(121) + a(122) + a(123) + a(124) + a(125) + a(126)= s1/2
a(127) + a(128) + a(129) + a(130) + a(131) + a(132)= s1/2
a(133) + a(134) + a(135) + a(136) + a(137) + a(138)= s1/2
a(139) + a(140) + a(141) + a(142) + a(143) + a(144)= s1/2
a( 1) + a(13) + a( 25) + a( 37) + a( 49) + a( 61) = s1/2
a(73) + a(85) + a( 97) + a(109) + a(121) + a(133) = s1/2
a( 2) + a(14) + a( 26) + a( 38) + a( 50) + a( 62) = s1/2
a(74) + a(86) + a( 98) + a(110) + a(122) + a(134) = s1/2
a( 3) + a(15) + a( 27) + a( 39) + a( 51) + a( 63) = s1/2
a(75) + a(87) + a( 99) + a(111) + a(123) + a(135) = s1/2
a( 4) + a(16) + a( 28) + a( 40) + a( 52) + a( 64) = s1/2
a(76) + a(88) + a(100) + a(112) + a(124) + a(136) = s1/2
a( 5) + a(17) + a( 29) + a( 41) + a( 53) + a( 65) = s1/2
a(77) + a(89) + a(101) + a(113) + a(125) + a(137) = s1/2
a( 6) + a(18) + a( 30) + a( 42) + a( 54) + a( 66) = s1/2
a(78) + a(90) + a(102) + a(114) + a(126) + a(138) = s1/2a( 7) + a(19) + a( 31) + a( 43) + a( 55) + a( 67) = s1/2
a(79) + a(91) + a(103) + a(115) + a(127) + a(139) = s1/2
a( 8) + a(20) + a( 32) + a( 44) + a( 56) + a( 68) = s1/2
a(80) + a(92) + a(104) + a(116) + a(128) + a(140) = s1/2
a( 9) + a(21) + a( 33) + a( 45) + a( 57) + a( 69) = s1/2
a(81) + a(93) + a(105) + a(117) + a(129) + a(141) = s1/2
a(10) + a(22) + a( 34) + a( 46) + a( 58) + a( 70) = s1/2
a(82) + a(94) + a(106) + a(118) + a(130) + a(142) = s1/2
a(11) + a(23) + a( 35) + a( 47) + a( 59) + a( 71) = s1/2
a(83) + a(95) + a(107) + a(119) + a(131) + a(143) = s1/2
a(12) + a(24) + a( 36) + a( 48) + a( 60) + a( 72) = s1/2
a(84) + a(96) + a(108) + a(120) + a(132) + a(144) = s1/2
The resulting number of equations can be written in the matrix representation as:
which can be reduced, by means of row and column manipulations, and results in following set of linear equations: a(139) = s1 / 2 - a(140) - a(141) - a(142) - a(143) - a(144) a(137) = s1 / 3 - a(138) - a(143) - a(144) a(136) = a(138) - a(142) + a(144) a(135) = s1 / 3 - a(138) - a(141) - a(144) a(134) = a(138) - a(140) + a(144) a(133) = -s1 / 6 - a(138) + a(140) + a(141) + a(142) + a(143) a(131) = s1 / 3 - a(132) - a(143) - a(144) a(130) = a(132) - a(142) + a(144) a(129) = s1 / 3 - a(132) - a(141) - a(144) a(128) = a(132) - a(140) + a(144) a(127) = -s1 / 6 - a(132) + a(140) + a(141) + a(142) + a(143) a(126) = a(132) - a(138) + a(144) a(125) = - a(132) + a(138) + a(143) a(124) = a(132) - a(138) + a(142) a(123) = -a(132) + a(138) + a(141) a(122) = a(132) - a(138) + a(140) a(121) = s1 / 2 - a(132) + a(138) - a(140) - a(141) - a(142) - a(143) - a(144) a(119) = - a(120) + a(143) + a(144) a(118) = a(120) + a(142) - a(144) a(117) = - a(120) + a(141) + a(144) a(116) = a(120) + a(140) - a(144) a(115) = s1 / 2 - a(120) - a(140) - a(141) - a(142) - a(143) a(114) = a(120) + a(138) - a(144) a(113) = s1 / 3 - a(120) - a(138) - a(143) a(112) = a(120) + a(138) - a(142) a(111) = s1 / 3 - a(120) - a(138) - a(141) a(110) = a(120) + a(138) - a(140) a(109) = -s1 / 6 - a(120) - a(138) + a(140) + a(141) + a(142) + a(143) + a(144) a(107) = s1 / 3 - a(108) - a(143) - a(144) a(106) = a(108) - a(142) + a(144) a(105) = s1 / 3 - a(108) - a(141) - a(144) a(104) = a(108) - a(140) + a(144) a(103) = -s1 / 6 - a(108) + a(140) + a(141) + a(142) + a(143) a(102) = a(108) - a(138) + a(144) a(101) = - a(108) + a(138) + a(143) a(100) = a(108) - a(138) + a(142) a( 99) = - a(108) + a(138) + a(141) a( 98) = a(108) - a(138) + a(140) a( 97) = s1 / 2 - a(108) + a(138) - a(140) - a(141) - a(142) - a(143) - a(144) a( 95) = - a(96) + a(143) + a(144) a( 94) = a(96) + a(142) - a(144) a( 93) = - a(96) + a(141) + a(144) a( 92) = a(96) + a(140) - a(144) a( 91) = s1 / 2 - a(96) - a(140) - a(141) - a(142) - a(143) a( 90) = a(96) + a(138) - a(144) a( 89) = s1 / 3 - a(96) - a(138) - a(143) a( 88) = a(96) + a(138) - a(142) a( 87) = s1 / 3 - a(96) - a(138) - a(141) a( 86) = a(96) + a(138) - a(140) a( 85) = -s1 / 6 - a(96) - a(138) + a(140) + a(141) + a(142) + a(143) + a(144) a( 84) = s1 / 2 - a(96) - a(108) - a(120) - a(132) - a(144) a( 83) = -s1 / 6 + a(96) + a(108) + a(120) + a(132) - a(143) a( 82) = s1 / 2 - a(96) - a(108) - a(120) - a(132) - a(142) a( 81) = -s1 / 6 + a(96) + a(108) + a(120) + a(132) - a(141) a( 80) = s1 / 2 - a(96) - a(108) - a(120) - a(132) - a(140) a( 79) = -2 * s1 / 3 + a(96) + a(108) + a(120) + a(132) + a(140) + a(141) + a(142) + a(143) + a(144) a( 78) = s1 / 2 - a(96) - a(108) - a(120) - a(132) - a(138) a( 77) = -s1 / 2 + a(96) + a(108) + a(120) + a(132) + a(138) + a(143) + a(144) a( 76) = s1 / 2 - a(96) - a(108) - a(120) - a(132) - a(138) + a(142) - a(144) a( 75) = -s1 / 2 + a(96) + a(108) + a(120) + a(132) + a(138) + a(141) + a(144) a( 74) = s1 / 2 - a(96) - a(108) - a(120) - a(132) - a(138) + a(140) - a(144) a( 73) = a(96) + a(108) + a(120) + a(132) + a(138) - a(140) - a(141) - a(142) - a(143)
The solutions can be obtained by guessing:
0 < a(i) =< 144 for i = 1, 2 ... 95, 97 ... 107, 109 ... 119, 121 ... 131, 133 ... 137, 139
An optimized guessing routine (MgcSqr12f) produced,
with a(144) = 1, a(143) = 36 and a(142) = 73
2880 Most Perfect Magic Squares within 103 seconds, of which the first 384 are shown in Attachment 12.2f.
The linear equations, deducted in Section 12.2.2, Section 12.2.4, Section 12.2.6 and Section 12.2.8 above, have been applied in following Excel Spread Sheets:
The red figures have to be “guessed” to construct a (Most Perefect) Pan Magic Square of the 12th order (wrong solutions are obvious).
|
Index | About the Author |